103 research outputs found
Combining Spatial and Temporal Logics: Expressiveness vs. Complexity
In this paper, we construct and investigate a hierarchy of spatio-temporal
formalisms that result from various combinations of propositional spatial and
temporal logics such as the propositional temporal logic PTL, the spatial
logics RCC-8, BRCC-8, S4u and their fragments. The obtained results give a
clear picture of the trade-off between expressiveness and computational
realisability within the hierarchy. We demonstrate how different combining
principles as well as spatial and temporal primitives can produce NP-, PSPACE-,
EXPSPACE-, 2EXPSPACE-complete, and even undecidable spatio-temporal logics out
of components that are at most NP- or PSPACE-complete
Module extraction via query inseparability in OWL 2 QL
We show that deciding conjunctive query inseparability for OWL 2 QL ontologies is PSpace-hard and in ExpTime. We give polynomial-time (incomplete) algorithms and demonstrate by experiments that they can be used for practical module extraction
On non-local propositional and weak monodic quantified CTL
Accepted versio
Theoretically optimal datalog rewritings for OWL 2 QL ontology-mediated queries
We show that, for OWL2QL ontology-mediated queries with (i) ontologies of bounded depth and conjunctive queries of bounded treewidth, (ii) ontologies of bounded depth and bounded-leaf tree-shaped conjunctive queries, and (iii) arbitrary ontologies and bounded-leaf tree-shaped conjunctive queries, one can construct and evaluate nonrecursive datalog rewritings by, respectively, LOGCFL, NL and LOGCFL algorithms, which matches the optimal combined complexity
Separating Counting from Non-Counting in Fragments of Two-Variable First-Order Logic (Extended Abstract)
We consider the problem of deciding whether two disjoint classes of models defined in a fragment of first-order logic (FO) with counting can be separated in the same fragment but without counting. This problem turns out to be hard. We show that separation for the two-variable fragment FO2 extended with counting quantifiers by means of plain FO2 is undecidable, and the same is true of the pair AℒCOℐQ/AℒCOℐ of description logics. On the other hand, we establish 2ExpTime-completeness of the separation problem for the pairs AℒCQu/AℒCu and AℒCℐQu/AℒCℐ
Modal Logics of Topological Relations
Logical formalisms for reasoning about relations between spatial regions play
a fundamental role in geographical information systems, spatial and constraint
databases, and spatial reasoning in AI. In analogy with Halpern and Shoham's
modal logic of time intervals based on the Allen relations, we introduce a
family of modal logics equipped with eight modal operators that are interpreted
by the Egenhofer-Franzosa (or RCC8) relations between regions in topological
spaces such as the real plane. We investigate the expressive power and
computational complexity of logics obtained in this way. It turns out that our
modal logics have the same expressive power as the two-variable fragment of
first-order logic, but are exponentially less succinct. The complexity ranges
from (undecidable and) recursively enumerable to highly undecidable, where the
recursively enumerable logics are obtained by considering substructures of
structures induced by topological spaces. As our undecidability results also
capture logics based on the real line, they improve upon undecidability results
for interval temporal logics by Halpern and Shoham. We also analyze modal
logics based on the five RCC5 relations, with similar results regarding the
expressive power, but weaker results regarding the complexity
Horn fragments of the Halpern-Shoham Interval Temporal Logic
We investigate the satisfiability problem for Horn fragments of the Halpern-Shoham interval temporal logic depending on the type (box or diamond) of the interval modal operators, the type of the underlying linear order (discrete or dense), and the type of semantics for the interval relations (reflexive or irreflexive). For example, we show that satisfiability of Horn formulas with diamonds is undecidable for any type of linear orders and semantics. On the contrary, satisfiability of Horn formulas with boxes is tractable over both discrete and dense orders under the reflexive semantics and over dense orders under the irreflexive semantics but becomes undecidable over discrete orders under the irreflexive semantics. Satisfiability of binary Horn formulas with both boxes and diamonds is always undecidable under the irreflexive semantics
- …