103 research outputs found

    Combining Spatial and Temporal Logics: Expressiveness vs. Complexity

    Full text link
    In this paper, we construct and investigate a hierarchy of spatio-temporal formalisms that result from various combinations of propositional spatial and temporal logics such as the propositional temporal logic PTL, the spatial logics RCC-8, BRCC-8, S4u and their fragments. The obtained results give a clear picture of the trade-off between expressiveness and computational realisability within the hierarchy. We demonstrate how different combining principles as well as spatial and temporal primitives can produce NP-, PSPACE-, EXPSPACE-, 2EXPSPACE-complete, and even undecidable spatio-temporal logics out of components that are at most NP- or PSPACE-complete

    Module extraction via query inseparability in OWL 2 QL

    Get PDF
    We show that deciding conjunctive query inseparability for OWL 2 QL ontologies is PSpace-hard and in ExpTime. We give polynomial-time (incomplete) algorithms and demonstrate by experiments that they can be used for practical module extraction

    Theoretically optimal datalog rewritings for OWL 2 QL ontology-mediated queries

    Get PDF
    We show that, for OWL2QL ontology-mediated queries with (i) ontologies of bounded depth and conjunctive queries of bounded treewidth, (ii) ontologies of bounded depth and bounded-leaf tree-shaped conjunctive queries, and (iii) arbitrary ontologies and bounded-leaf tree-shaped conjunctive queries, one can construct and evaluate nonrecursive datalog rewritings by, respectively, LOGCFL, NL and LOGCFL algorithms, which matches the optimal combined complexity

    Separating Counting from Non-Counting in Fragments of Two-Variable First-Order Logic (Extended Abstract)

    Get PDF
    We consider the problem of deciding whether two disjoint classes of models defined in a fragment of first-order logic (FO) with counting can be separated in the same fragment but without counting. This problem turns out to be hard. We show that separation for the two-variable fragment FO2 extended with counting quantifiers by means of plain FO2 is undecidable, and the same is true of the pair AℒCOℐQ/AℒCOℐ of description logics. On the other hand, we establish 2ExpTime-completeness of the separation problem for the pairs AℒCQu/AℒCu and AℒCℐQu/AℒCℐ

    Modal Logics of Topological Relations

    Full text link
    Logical formalisms for reasoning about relations between spatial regions play a fundamental role in geographical information systems, spatial and constraint databases, and spatial reasoning in AI. In analogy with Halpern and Shoham's modal logic of time intervals based on the Allen relations, we introduce a family of modal logics equipped with eight modal operators that are interpreted by the Egenhofer-Franzosa (or RCC8) relations between regions in topological spaces such as the real plane. We investigate the expressive power and computational complexity of logics obtained in this way. It turns out that our modal logics have the same expressive power as the two-variable fragment of first-order logic, but are exponentially less succinct. The complexity ranges from (undecidable and) recursively enumerable to highly undecidable, where the recursively enumerable logics are obtained by considering substructures of structures induced by topological spaces. As our undecidability results also capture logics based on the real line, they improve upon undecidability results for interval temporal logics by Halpern and Shoham. We also analyze modal logics based on the five RCC5 relations, with similar results regarding the expressive power, but weaker results regarding the complexity

    Horn fragments of the Halpern-Shoham Interval Temporal Logic

    Get PDF
    We investigate the satisfiability problem for Horn fragments of the Halpern-Shoham interval temporal logic depending on the type (box or diamond) of the interval modal operators, the type of the underlying linear order (discrete or dense), and the type of semantics for the interval relations (reflexive or irreflexive). For example, we show that satisfiability of Horn formulas with diamonds is undecidable for any type of linear orders and semantics. On the contrary, satisfiability of Horn formulas with boxes is tractable over both discrete and dense orders under the reflexive semantics and over dense orders under the irreflexive semantics but becomes undecidable over discrete orders under the irreflexive semantics. Satisfiability of binary Horn formulas with both boxes and diamonds is always undecidable under the irreflexive semantics
    corecore