25 research outputs found

    Homologs of Circadian Clock Proteins Impact the Metabolic Switch Between Light and Dark Growth in the Cyanobacterium Synechocystis sp. PCC 6803

    Get PDF
    The putative circadian clock system of the facultative heterotrophic cyanobacterial strain Synechocystis sp. PCC 6803 comprises the following three Kai-based systems: a KaiABC-based potential oscillator that is linked to the SasA-RpaA two-component output pathway and two additional KaiBC systems without a cognate KaiA component. Mutants lacking the genes encoding the KaiAB1C1 components or the response regulator RpaA show reduced growth in light/dark cycles and do not show heterotrophic growth in the dark. In the present study, the effect of these mutations on central metabolism was analyzed by targeted and non-targeted metabolite profiling. The strongest metabolic changes were observed in the dark in ΔrpaA and, to a lesser extent, in the ΔkaiAB1C1 mutant. These observations included the overaccumulation of 2-phosphoglycolate, which correlated with the overaccumulation of the RbcL subunit in the mutants, and taken together, these data suggest enhanced RubisCO activity in the dark. The imbalanced carbon metabolism in the ΔrpaA mutant extended to the pyruvate family of amino acids, which showed increased accumulation in the dark. Hence, the deletion of the response regulator rpaA had a more pronounced effect on metabolism than the deletion of the kai genes. The larger impact of the rpaA mutation is in agreement with previous transcriptomic analyses and likely relates to a KaiAB1C1-independent function as a transcription factor. Collectively, our data demonstrate an important role of homologs of clock proteins in Synechocystis for balanced carbon and nitrogen metabolism during light-to-dark transitions

    Degradation of aflatoxin B1 from naturally contaminated maize using the edible fungus Pleurotus ostreatus

    Get PDF
    Aflatoxins are highly carcinogenic secondary metabolites that can contaminate approximately 25% of crops and that cause or exacerbate multiple adverse health conditions, especially in Sub-Saharan Africa and South and Southeast Asia. Regulation and decontamination of aflatoxins in high exposure areas is lacking. Biological detoxification methods are promising because they are assumed to be cheaper and more environmentally friendly compared to chemical alternatives. White-rot fungi produce non-specific enzymes that are known to degrade aflatoxin in in situ and ex situ experiments. The aims of this study were to (1) decontaminate aflatoxin-B-1-(AFB(1)) in naturally contaminated maize with the edible, white-rot fungus Pleurotus ostreatus (oyster mushroom) using a solid-state fermentation system that followed standard cultivation techniques, and to (2) and to assess the risk of mutagenicity in the resulting breakdown products and mushrooms. Vegetative growth and yield characteristics of P. ostreatus were not inhibited by the presence of-AFB(1).-AFB(1) was degraded by up to 94% by the Blue strain. No aflatoxin could be detected in P. ostreatus mushrooms produced from-AFB(1)-contaminated maize. Moreover, the mutagenicity of breakdown products from the maize substrate, and reversion of breakdown products to the parent compound, were minimal. These results suggest that P. ostreatus significantly degrades-AFB(1) in naturally contaminated maize under standard cultivation techniques to levels that are acceptable for some livestock fodder, and that using P. ostreatus to bioconvert crops into mushrooms can reduce-AFB(1)-related losses.University of Arizona Green Fund [GF 15.31]Open Access Journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    PARENTING STYLES AS PERCEIVED BY MODEL AND PROBLEM ADOLESCENTS

    No full text
    Bachelor'sBACHELOR OF SOCIAL SCIENCES (HONOURS

    Application of QUASAR Modelling in the uppanar river of Cuddalore District of Tamil Nadu, India

    No full text
    Quality simulation along river system (QUASAR) is a water quality and flow model for river networks. This paper presents the study on the determination of the physicochemical parameters of the water sample in the Uppanar River, Cuddalore district of Tamil Nadu, India at 3 different points from November 2009 to July 2010 and application of QUASAR software modeling. From the analysis of various physicochemical parameters that exceeded the permissible limits of the Indian Council for Medical and Research, the river was said to be moderately polluted. In this paper, the measured data of dissolved oxygen (DO), biological oxygen demand (BOD) and pH along the three sampling stations was used for QUASAR modelling. The average percentage error values obtained for station I, II, and III regarding DO were 3.49%, 2.38%, and 2.26%, for BOD 1.2%, 5.9%, and 1.98%, and for pH 2.57%, 2.41%, and 1.51%, respectively. It was observed that ther
    corecore