1,152 research outputs found

    Noise Correlations in a Coulomb Blockaded Quantum Dot

    Full text link
    We report measurements of current noise auto- and cross-correlation in a tunable quantum dot with two or three leads. As the Coulomb blockade is lifted at finite source-drain bias, the auto-correlation evolves from super-Poissonian to sub-Poissonian in the two-lead case, and the cross-correlation evolves from positive to negative in the three-lead case, consistent with transport through multiple levels. Cross-correlations in the three-lead dot are found to be proportional to the noise in excess of the Poissonian value in the limit of weak output tunneling

    Distinct Signatures For Coulomb Blockade and Aharonov-Bohm Interference in Electronic Fabry-Perot Interferometers

    Get PDF
    Two distinct types of magnetoresistance oscillations are observed in two electronic Fabry-Perot interferometers of different sizes in the integer quantum Hall regime. Measuring these oscillations as a function of magnetic field and gate voltages, we observe three signatures that distinguish the two types. The oscillations observed in a 2.0 square micron device are understood to arise from the Coulomb blockade mechanism, and those observed in an 18 square micron device from the Aharonov-Bohm mechanism. This work clarifies, provides ways to distinguish, and demonstrates control over, these distinct physical origins of resistance oscillations seen in electronic Fabry-Perot interferometers.Comment: related papers at http://marcuslab.harvard.ed

    Using the Uniqueness of Global Identifiers to Determine the Provenance of Python Software Source Code

    Full text link
    We consider the problem of identifying the provenance of free/open source software (FOSS) and specifically the need of identifying where reused source code has been copied from. We propose a lightweight approach to solve the problem based on software identifiers-such as the names of variables, classes, and functions chosen by programmers. The proposed approach is able to efficiently narrow down to a small set of candidate origin products, to be further analyzed with more expensive techniques to make a final provenance determination.By analyzing the PyPI (Python Packaging Index) open source ecosystem we find that globally defined identifiers are very distinct. Across PyPI's 244 K packages we found 11.2 M different global identifiers (classes and method/function names-with only 0.6% of identifiers shared among the two types of entities); 76% of identifiers were used only in one package, and 93% in at most 3. Randomly selecting 3 non-frequent global identifiers from an input product is enough to narrow down its origins to a maximum of 3 products within 89% of the cases.We validate the proposed approach by mapping Debian source packages implemented in Python to the corresponding PyPI packages; this approach uses at most five trials, where each trial uses three randomly chosen global identifiers from a randomly chosen python file of the subject software package, then ranks results using a popularity index and requires to inspect only the top result. In our experiments, this method is effective at finding the true origin of a project with a recall of 0.9 and precision of 0.77

    Incommensurate itinerant antiferromagnetic excitations and spin resonance in the FeTe0.6_{0.6}Se0.4_{0.4} superconductor

    Full text link
    We report on inelastic neutron scattering measurements that find incommensurate itinerant like magnetic excitations in the normal state of superconducting FeTe0.6_{0.6}Se0.4_{0.4} (\Tc=14K) at wave-vector Qinc=(1/2±ϵ,1/2∓ϵ)\mathbf{Q}_{inc}=(1/2\pm\epsilon,1/2\mp\epsilon) with ϵ\epsilon=0.09(1). In the superconducting state only the lower energy part of the spectrum shows significant changes by the formation of a gap and a magnetic resonance that follows the dispersion of the normal state excitations. We use a four band model to describe the Fermi surface topology of iron-based superconductors with the extended s(±)s(\pm) symmetry and find that it qualitatively captures the salient features of these data.Comment: 7 pages and 5 figure

    Shot Noise in Graphene

    Full text link
    We report measurements of current noise in single- and multi-layer graphene devices. In four single-layer devices, including a p-n junction, the Fano factor remains constant to within +/-10% upon varying carrier type and density, and averages between 0.35 and 0.38. The Fano factor in a multi-layer device is found to decrease from a maximal value of 0.33 at the charge-neutrality point to 0.25 at high carrier density. These results are compared to theoretical predictions for shot noise in ballistic and disordered graphene.Comment: related papers available at http://marcuslab.harvard.ed
    • …
    corecore