28 research outputs found
Micro-mechanical finite element analysis of Z-pins under mixed-mode loading
© 2015 Elsevier Ltd. All rights reserved.This paper presents a three-dimensional micro-mechanical finite element (FE) modelling strategy for predicting the mixed-mode response of single Z-pins inserted in a composite laminate. The modelling approach is based upon a versatile ply-level mesh, which takes into account the significant micro-mechanical features of Z-pinned laminates. The effect of post-cure cool down is also considered in the approach. The Z-pin/laminate interface is modelled by cohesive elements and frictional contact. The progressive failure of the Z-pin is simulated considering shear-driven internal splitting, accounted for using cohesive elements, and tensile fibre failure, modelled using the Weibulls criterion. The simulation strategy is calibrated and validated via experimental tests performed on single carbon/BMI Z-pins inserted in quasi-isotropic laminate. The effects of the bonding and friction at the Z-pin/laminate interface and the internal Z-pin splitting are discussed. The primary aim is to develop a robust numerical tool and guidelines for designing Z-pins with optimal bridging behaviour
Interaction of Z-pins with Multiple Mode II Delaminations in Composite Laminates
The application of Z-pinning is a subject of great interest in the field of through-thickness reinforcement (TTR) of composite laminates. To date, the majority of Z-pin characterisation work has been conducted on fracture coupons containing a single embedded delamination, which is often not representative of real failure of reinforced composite structures in service. In this investigation a test procedure to produce two independent Mode II delaminations was developed to analyse their interaction with a region of Z-pin reinforcement. Initially numerical models were used to optimise the chosen configuration. Experimental results show in detail the response of Z-pins to two independent delaminations. These results highlight the ability of the Z-pins to effectively arrest mode II delaminations at multiple levels through the sample thickness. Additionally they provide a much needed data set for validation and verification of Z-pin numerical modelling tools
A novel model of delamination bridging via Z-pins in composite laminates
AbstractA new micro-mechanical model is proposed for describing the bridging actions exerted by through-thickness reinforcement on delaminations in prepreg based composite materials, subjected to a mixed-mode (I–II) loading regime. The model applies to micro-fasteners in the form of brittle fibrous rods (Z-pins) inserted in the through-thickness direction of composite laminates. These are described as Euler–Bernoulli beams inserted in an elastic foundation that represents the embedding composite laminate. Equilibrium equations that relate the delamination opening/sliding displacements to the bridging forces exerted by the Z-pins on the interlaminar crack edges are derived. The Z-pin failure meso-mechanics is explained in terms of the laminate architecture and the delamination mode. The apparent fracture toughness of Z-pinned laminates is obtained from as energy dissipated by the pull out of the through-thickness reinforcement, normalised with respect to a reference area. The model is validated by means of experimental data obtained for single carbon/BMI Z-pins inserted in a quasi-isotropic laminate
Recommended from our members
Electrical and Mechanical Behaviour of Copper Tufted CFRP Composite Joints
Electrical continuity of dissimilar joints controls the current and thermal pathways during lightning strike. Tufting using carbon, glass or Kevlar fibres is a primary to introduce through thickness reinforcement for composite structures and assemblies. Replacing the conventional tuft thread material with metallic conductive wire presents an opportunity for enhancing current
dissipation and deal with electrical bottlenecks across dissimilar joints. Simulation of the electro-thermo-mechanical behaviour of joints was carried out to assess the influence of metallic tufting. The finite element solver MSC.Marc was utilised. Mechanical models incorporate continuum damage mechanics (CDM) to capture progressive damage in both composite and aluminium components of the joint. The mechanical models were coupled with electrical and thermal simulations of reference and copper tufted carbon fibre epoxy composite joints to assess both the lightning strike response and mechanical robustness of the assembly as well as the improvements offered by tufting. Validation of the model is based on electrical conduction and temperature measurements alongside delamination tests.Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 887042, D-JOINTS
Electrical and mechanical behaviour of copper tufted CFRP composite joints
Electrical continuity of dissimilar joints controls the current and thermal pathways during lightning strike. Tufting using carbon, glass or Kevlar fibres is a primary to introduce through thickness reinforcement for composite structures and assemblies. Replacing the conventional tuft thread material with metallic conductive wire presents an opportunity for enhancing current dissipation and deal with electrical bottlenecks across dissimilar joints. Simulation of the electro-thermo-mechanical behaviour of joints was carried out to assess the influence of metallic tufting. The finite element solver MSC.Marc was utilised. Mechanical models incorporate continuum damage mechanics (CDM) to capture progressive damage in both composite and aluminium components of the joint. The mechanical models were coupled with electrical and thermal simulations of reference and copper tufted carbon fibre epoxy composite joints to assess both the lightning strike response and mechanical robustness of the assembly as well as the improvements offered by tufting. Validation of the model is based on electrical conduction and temperature measurements alongside delamination tests.European Union funding: 88704