433,902 research outputs found

    A Relational Approach to Quantum Mechanics, Part I: Formulation

    Full text link
    Non-relativistic quantum mechanics is reformulated here based on the idea that relational properties among quantum systems, instead of the independent properties of a quantum system, are the most fundamental elements to construct quantum mechanics. This idea, combining with the emphasis that measurement of a quantum system is a bidirectional interaction process, leads to a new framework to calculate the probability of an outcome when measuring a quantum system. In this framework, the most basic variable is the relational probability amplitude. Probability is calculated as summation of weights from the alternative measurement configurations. The properties of quantum systems, such as superposition and entanglement, are manifested through the rules of counting the alternatives. Wave function and reduced density matrix are derived from the relational probability amplitude matrix. They are found to be secondary mathematical tools that equivalently describe a quantum system without explicitly calling out the reference system. Schr\"{o}dinger Equation is obtained when there is no entanglement in the relational probability amplitude matrix. Feynman Path Integral is used to calculate the relational probability amplitude, and is further generalized to formulate the reduced density matrix. In essence, quantum mechanics is reformulated as a theory that describes physical systems in terms of relational properties.Comment: 19 pages, 2 figures, article split into 3 parts during refereeing, minor correction. Adding journal reference for part

    Online monitoring and diagnosis of HV cable faults by sheath system currents

    Get PDF

    Roles of tumor suppressors in regulating tumor-associated inflammation.

    Get PDF
    Loss or silencing of tumor suppressors (TSs) promotes neoplastic transformation and malignant progression. To date, most work on TS has focused on their cell autonomous effects. Recent evidence, however, demonstrates an important noncell autonomous role for TS in the control of tumor-associated inflammation. We review evidence from clinical data sets and mouse model studies demonstrating enhanced inflammation and altered tumor microenvironment (TME) upon TS inactivation. We discuss clinical correlations between tumor-associated inflammation and inactivation of TS, and their therapeutic implications. This review sets forth the concept that TS can also suppress tumor-associated inflammation, a concept that provides new insights into tumor-host interactions. We also propose that in some cases the loss of TS function in cancer can be overcome through inhibition of the resulting inflammatory response, regardless whether it is a direct or an indirect consequence of TS loss

    Quantum steering of electron wave function in an InAs Y-branch switch

    Get PDF
    We report experiments on gated Y-branch switches made from InAs ballistic electron wave guides. We demonstrate that gating modifies the electron wave functions as well as their interference pattern, causing the anti-correlated, oscillatory transconductances. Such previously unexpected phenomenon provides evidence of steering the electron wave function in a multi-channel transistor structure.Comment: 15 pages, including 3 figure
    corecore