1,641 research outputs found

    Role of Coulomb correlation on magnetic and transport properties of doped manganites: La0.5Sr0.5MnO3 and LaSr2Mn2O7

    Full text link
    Results of LSDA and LSDA+U calculations of the electronic structure and magnetic configurations of the 50% hole-doped pseudocubic perovskite La0.5Sr0.5MnO3 and double layered LaSr2Mn2O7 are presented. We demonstrate that the on-site Coulomb correlation (U) of Mn d electrons has a very different influence on the (i) band formations, (ii) magnetic ground states, (iii) interlayer exchange interactions, and (iv) anisotropy of the electrical transport in these two manganites. A possible reason why the LSDA failures in predicting observed magnetic and transport properties of the double layered compound - in contrast to the doped perovskite manganite - is considered on the basis of a p-d hybridization analysis.Comment: 11 pages, 3 figure

    Doping-driven Mott transition in La_{1-x}Sr_xTiO_3 via simultaneous electron and hole doping of t2g subbands

    Get PDF
    The insulator to metal transition in LaTiO_3 induced by La substitution via Sr is studied within multi-band exact diagonalization dynamical mean field theory at finite temperatures. It is shown that weak hole doping triggers a large interorbital charge transfer, with simultaneous electron and hole doping of t2g subbands. The transition is first-order and exhibits phase separation between insulator and metal. In the metallic phase, subband compressibilities become very large and have opposite signs. Electron doping gives rise to an interorbital charge flow in the same direction as hole doping. These results can be understood in terms of a strong orbital depolarization.Comment: 4 pages, 5 figure

    Non-leptonic two-body decays of the Bc meson in light-front quark model and QCD factorization approach

    Full text link
    We study exclusive non-leptonic two-body Bc→(D(s),ηc,B(s))+FB_c\to(D_{(s)},\eta_c,B_{(s)})+F decays with FF(pseudoscalar or vector meson) being factored out in QCD factorization approach. The non-leptonic decay amplitudes are related to the product of meson decay constants and the form factors for semileptonic BcB_c decays. As inputs in obtaining the branching ratios for a large set of non-leptonic BcB_c decays, we use the weak form factors for the semileptonic Bc→(D(s),ηc,B(s))B_c\to(D_{(s)},\eta_c,B_{(s)}) decays in the whole kinematical region and the unmeasured meson decay constants obtained from our previous light-front quark model. We compare our results of the branching ratios with those of other theoretical studies.Comment: 11 pages, 3 figures, minor corrections, version to appear in PR

    Post density functional theoretical studies of highly polar semiconductive Pb(Ti1−x_{1-x}Nix_{x})O3−x_{3-x} solid solutions: The effects of cation arrangement on band gap

    Full text link
    We use a combination of conventional density functional theory (DFT) and post-DFT methods, including the local density approximation plus Hubbard UU (LDA+UU), PBE0, and self-consistent GWGW to study the electronic properties of Ni-substituted PbTiO3_{3} (Ni-PTO) solid solutions. We find that LDA calculations yield unreasonable band structures, especially for Ni-PTO solid solutions that contain an uninterrupted NiO2_{2} layer. Accurate treatment of localized states in transition-metal oxides like Ni-PTO requires post-DFT methods. BB-site Ni/Ti cation ordering is also investigated. The BB-site cation arrangement alters the bonding between Ni and O, and therefore strongly affects the band gap (EgE_{\rm g}) of Ni-PTO. We predict that Ni-PTO solid solutions should have a direct band gap in the visible light energy range, with polarization similar to the parent PbTiO3_{3}. This combination of properties make Ni-PTO solid solutions promising candidate materials for solar energy conversion devices.Comment: 19 pages, 6 figure

    Branching ratios of Bc Meson Decays into Tensor Meson in the Final State

    Full text link
    Two-body hadronic weak decays of Bc meson involving tensor meson in the final state are studied by using Isgur- Scora-Grinstein-Wise (ISGW II) model. Decay amplitudes are obtained using the factorization scheme in the Spectator Quark Model. Branching ratios for the charm changing and bottom changing decay modes are predicted.Comment: 18 pages. accepted in Physical Review

    Visible Effects of the Hidden Sector

    Full text link
    The renormalization of operators responsible for soft supersymmetry breaking is usually calculated by starting at some high scale and including only visible sector interactions in the evolution equations, while ignoring hidden sector interactions. Here we explain why this is correct only for the most trivial structures in the hidden sector, and discuss possible implications. This investigation was prompted by the idea of conformal sequestering. In that framework hidden sector renormalizations by nearly conformal dynamics are critical. In the original models of conformal sequestering it was necessary to impose hidden sector flavor symmetries to achieve the sequestered form. We present models which can evade this requirement and lead to no-scale or anomaly mediated boundary conditions; but the necessary structures do not seem generic. More generally, the ratios of scalar masses to gaugino masses, the μ\mu-term, the BμB\mu-term, AA-terms, and the gravitino mass can be significantly affected.Comment: 23 pages, no figure

    Nonmonotonical crossover of the effective susceptibility exponent

    Full text link
    We have numerically determined the behavior of the magnetic susceptibility upon approach of the critical point in two-dimensional spin systems with an interaction range that was varied over nearly two orders of magnitude. The full crossover from classical to Ising-like critical behavior, spanning several decades in the reduced temperature, could be observed. Our results convincingly show that the effective susceptibility exponent gamma_eff changes nonmonotonically from its classical to its Ising value when approaching the critical point in the ordered phase. In the disordered phase the behavior is monotonic. Furthermore the hypothesis that the crossover function is universal is supported.Comment: 4 pages RevTeX 3.0/3.1, 5 Encapsulated PostScript figures. Uses epsf.sty. Accepted for publication in Physical Review Letters. Also available as PostScript and PDF file at http://www.tn.tudelft.nl/tn/erikpubs.htm

    Orbital-dependent metamagnetic response in Sr4Ru3O10

    Full text link
    We show that the metamagnetic transition in Sr4_4Ru3_3O10_{10} bifurcates into two transitions as the field is rotated away from the conducting planes. This two-step process comprises partial or total alignment of moments in ferromagnetic bands followed by an itinerant metamagnetic transition whose critical field increases with rotation. Evidence for itinerant metamagnetism is provided by the Shubnikov-de Hass effect which shows a non-trivial evolution of the geometry of the Fermi surface and an enhancement of the quasiparticles effective-mass across the transition. The metamagnetic response of Sr4_4Ru3_3O10_{10} is orbital-dependent and involves ferromagnetic and metamagnetic bands.Comment: Physical Review B (in press

    Exchange interactions and magnetic properties of the layered vanadates CaV2O5, MgV2O5, CaV3O7 and CaV4O9

    Full text link
    We have performed ab-initio calculations of exchange couplings in the layered vanadates CaV2O5, MgV2O5, CaV3O7 and CaV4O9. The uniform susceptibility of the Heisenberg model with these exchange couplings is then calculated by quantum Monte Carlo method; it agrees well with the experimental measurements. Based on our results we naturally explain the unusual magnetic properties of these materials, especially the huge difference in spin gap between CaV2O5 and MgV2O5, the unusual long range order in CaV3O7 and the "plaquette resonating valence bond (RVB)" spin gap in CaV4O9

    First-order transition between a small-gap semiconductor and a ferromagnetic metal in the isoelectronic alloys FeSi1−x_{1-x}Gex_x

    Full text link
    The contrasting groundstates of isoelectronic and isostructural FeSi and FeGe can be explained within an extended local density approximation scheme (LDA+U) by an appropriate choice of the onsite Coulomb repulsion, UU on the Fe-sites. A minimal two-band model with interband interactions allows us to obtain a phase diagram for the alloys FeSi1−x_{1-x}Gex_{x}. Treating the model in a mean field approximation, gives a first order transition between a small-gap semiconductor and a ferromagnetic metal as a function of magnetic field, temperature, and concentration, xx. Unusually the transition from metal to insulator is driven by broadening, not narrowing, the bands and it is the metallic state that shows magnetic order.Comment: 4 pages, 5 figure
    • …
    corecore