1,104 research outputs found

    Facilitated sequence counting and assembly by template mutagenesis

    Get PDF
    Presently, inferring the long-range structure of the DNA templates is limited by short read lengths. Accurate template counts suffer from distortions occurring during PCR amplification. We explore the utility of introducing random mutations in identical or nearly identical templates to create distinguishable patterns that are inherited during subsequent copying. We simulate the applications of this process under assumptions of error-free sequencing and perfect mapping, using cytosine deamination as a model for mutation. The simulations demonstrate that within readily achievable conditions of nucleotide conversion and sequence coverage, we can accurately count the number of otherwise identical molecules as well as connect variants separated by long spans of identical sequence. We discuss many potential applications, such as transcript profiling, isoform assembly, haplotype phasing, and de novo genome assembly

    Introduction and Expression of a Rabbit β-globin Gene in Mouse Fibroblasts

    Get PDF
    The cloned chromosomal rabbit ß-globin gene has been introduced into mouse fibroblasts by DNA-mediated gene transfer (transformation). In this report, we examine the expression of the rabbit gene in six independent transformants that contain from 1 to 20 copies of the cloned globin gene. Rabbit globin transcripts were detected in two of these transformants at steady-state concentrations of 5 and 2 copies per cell. The globin transcripts from one cell line are polyadenylylated and migrate as 9S RNA on methylmercury gels. These transcripts reflect correct processing of the two intervening sequences but lack 48 ± 5 nucleotides present at the 5' terminus of rabbit erythrocyte globin mRNA

    Expression and rearrangement of the ROS1 gene in human glioblastoma cells

    Get PDF
    The human ROS1 gene, which possibly encodes a growth factor receptor, was found to be expressed in human tumor cell lines. In a survey of 45 different human cell lines, we found ROS1 to be expressed in glioblastoma-derived cell lines at high levels and not to be expressed at all, or expressed at very low levels, in the remaining cell lines. The ROS1 gene was present in normal copy numbers in all cell lines that expressed the gene. However, in one particular glioblastoma line, we detected a potentially activating mutation at the ROS1 locus

    Multiple regulatory domains on the Byr2 protein kinase

    Get PDF
    Byr2 protein kinase, a homolog of mammalian mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEKK) and Saccharomyces cerevisiae STE11, is required for pheromone-induced sexual differentiation in the fission yeast Schizosaccharomyces pombe. Byr2 functions downstream of Ste4, Ras1, and the membrane-associated receptor-coupled heterotrimeric G-protein alpha subunit, Gpa1. Byr2 has a distinctive N-terminal kinase regulatory domain and a characteristic C-terminal kinase catalytic domain. Ste4 and Ras1 interact with the regulatory domain of Byr2 directly. Here, we define the domains of Byr2 that bind Ste4 and Ras1 and show that the Byr2 regulatory domain binds to the catalytic domain in the two-hybrid system. Using Byr2 mutants, we demonstrate that these direct physical interactions are all required for proper signaling. In particular, the physical association between Byr2 regulatory and catalytic domains appears to result in autoinhibition, the loss of which results in kinase activation. Furthermore, we provide evidence that Shk1, the S. pombe homolog of the STE20 protein kinase, can directly antagonize the Byr2 intramolecular interaction, possibly by phosphorylating Byr2

    Induction of Plasminogen Activator in Cultured Cells by Macrocyclic Plant Diterpene Esters and Other Agents Related to Tumor Promotion

    Get PDF
    In vitro systems that are responsive to tumor-promoting agents may facilitate the identification of such agents and the analysis of their mode of action. We have previously reported that the potent tumor promoter phorbol-12-myristate-13-acetate induces the synthesis of the enzyme plasminogen activator in cultured chick embryo fibroblasts. We have, therefore, tested various compounds for their ability to induce plasminogen activator in chicken embryo fibroblasts. Among these, phorbol esters and other macrocyclic diterpene esters isolated from species of the families Euphorbiaceae and Thymelaeaceae were potent inducers of plasminogen activator. These compounds maximally induced enzyme to the same levels, although they differed in their relative molar potencies. Structural requirements for in vitro activity paralleled the requirements for activity in vivo. These results indicate that induction of plasminogen activator is a useful marker for the biologically active macrocyclic diterpene esters. On the other hand, tumor-promoting agents such as anthralin, cantharidin, Tween 60, and tobacco leaf extract failed to induce plasminogen activator

    Target inference from collections of genomic intervals

    Get PDF
    Finding regions of the genome that are significantly recurrent in noisy data are a common but difficult problem in present day computational biology. Cores of recurrent events (CORE) is a computational approach to solving this problem that is based on a formalized notion by which "core" intervals explain the observed data, where the number of cores is the "depth" of the explanation. Given that formalization, we implement CORE as a combinatorial optimization procedure with depth chosen from considerations of statistical significance. An important feature of CORE is its ability to explain data with cores of widely varying lengths. We examine the performance of this system with synthetic data, and then provide two demonstrations of its utility with actual data. Applying CORE to a collection of DNA copy number profiles from single cells of a given tumor, we determine tumor population phylogeny and find the features that separate subpopulations. Applying CORE to comparative genomic hybridization data from a large set of tumor samples, we define regions of recurrent copy number aberration in breast cancer

    SCH9, a gene of Saccharomyces cerevisiae that encodes a protein distinct from, but functionally and structurally related to, cAMP-dependent protein kinase catalytic subunits

    Get PDF
    A new gene, SCH9, was isolated from Saccharomyces cerevisiae by its ability to complement a cdc25ts mutation. Sequence analysis indicates that it encodes a 90,000-dalton protein with a carboxy-terminal domain homologous to yeast and mammalian cAMP-dependent protein kinase catalytic subunits. In addition to suppressing loss of CDC25 function, multicopy plasmids containing SCH9 suppress the growth defects of strains lacking the RAS genes, the CYR1 gene, which encodes adenylyl cyclase, and the TPK genes, which encode the cAMP-dependent protein kinase catalytic subunits. Cells lacking SCH9 grow slowly and have a prolonged G1 phase of the cell cycle. This defect is suppressed by activation of the cAMP effector pathway. We propose that SCH9 encodes a protein kinase that is part of a growth control pathway which is at least partially redundant with the cAMP pathway
    • …
    corecore