611 research outputs found

    Cross-comparison of MRCGP & MRCP(UK) in a database linkage study of 2,284 candidates taking both examinations: assessment of validity and differential performance by ethnicity.

    Get PDF
    MRCGP and MRCP(UK) are the main entry qualifications for UK doctors entering general [family] practice or hospital [internal] medicine. The performance of MRCP(UK) candidates who subsequently take MRCGP allows validation of each assessment. In the UK, underperformance of ethnic minority doctors taking MRCGP has had a high political profile, with a Judicial Review in the High Court in April 2014 for alleged racial discrimination. Although the legal challenge was dismissed, substantial performance differences between white and BME (Black and Minority Ethnic) doctors undoubtedly exist. Understanding ethnic differences can be helped by comparing the performance of doctors who take both MRCGP and MRCP(UK)

    Limits on Clouds and Hazes for the TRAPPIST-1 Planets

    Full text link
    The TRAPPIST-1 planetary system is an excellent candidate for study of the evolution and habitability of M-dwarf planets. Transmission spectroscopy observations performed with the Hubble Space Telescope (HST) suggest the innermost five planets do not possess clear hydrogen atmospheres. Here we reassess these conclusions with recently updated mass constraints and expand the analysis to include limits on metallicity, cloud top pressure, and the strength of haze scattering. We connect recent laboratory results of particle size and production rate for exoplanet hazes to a one-dimensional atmospheric model for TRAPPIST-1 transmission spectra. Doing so, we obtain a physically-based estimate of haze scattering cross sections. We find haze scattering cross sections on the order of 1e-26 to 1e-19 cm squared are needed in hydrogen-rich atmospheres for TRAPPIST-1 d, e, and f to match the HST data. For TRAPPIST-1 g, we cannot rule out a clear hydrogen-rich atmosphere. We also modeled the effects an opaque cloud deck and substantial heavy element content have on the transmission spectra. We determine that hydrogen-rich atmospheres with high altitude clouds, at pressures of 12mbar and lower, are consistent with the HST observations for TRAPPIST-1 d and e. For TRAPPIST-1 f and g, we cannot rule out clear hydrogen-rich cases to high confidence. We demonstrate that metallicities of at least 60xsolar with tropospheric (0.1 bar) clouds agree with observations. Additionally, we provide estimates of the precision necessary for future observations to disentangle degeneracies in cloud top pressure and metallicity. Our results suggest secondary, volatile-rich atmospheres for the outer TRAPPIST-1 planets d, e, and f.Comment: 15 pages, 3 figures, 2 tables, accepted in the Astronomical Journa

    Aerosols are not Spherical Cows: Using Discrete Dipole Approximation to Model the Properties of Fractal Particles

    Full text link
    The optical properties of particulate-matter aerosols, within the context of exoplanet and brown dwarf atmospheres, are compared using three different models: Mie theory, Modified Mean Field (MMF) Theory, and Discrete Dipole Approximation (DDA). Previous results have demonstrated that fractal haze particles (MMF and DDA) absorb much less long-wavelength radiation than their spherical counterparts (Mie), however it is shown here that the opposite can also be true if a more varying refractive index profile is used. Additionally, it is demonstrated that absorption and scattering cross-sections, as well as the asymmetry parameter, are underestimated if Mie theory is used. Although DDA can be used to obtain more accurate results, it is known to be much more computationally intensive; to avoid this, the use of low-resolution aerosol models is explored, which could dramatically speed up the process of obtaining accurate computations of optical cross-sections within a certain parameter space. The validity of DDA is probed for wavelengths of interest for observations of aerosols within exoplanet and brown dwarf atmospheres (0.2 to 15 micrometres). Finally, novel code is presented to compare the results of Mie, MMF and DDA theories (CORAL: Comparison Of Radiative AnaLyses), as well as to increase and decrease the resolution of DDA shape files accordingly (SPHERIFY). Both codes can be applied to a range of other interesting astrophysical environments in addition to exoplanet atmospheres, for example dust grains within protoplanetary disks.Comment: 24 pages, 23 figures, accepted for publication in "Monthly Notices of the Royal Astronomical Society

    High temperature condensate clouds in super-hot Jupiter atmospheres

    Full text link
    Deciphering the role of clouds is central to our understanding of exoplanet atmospheres, as they have a direct impact on the temperature and pressure structure, and observational properties of the planet. Super-hot Jupiters occupy a temperature regime similar to low mass M-dwarfs, where minimal cloud condensation is expected. However, observations of exoplanets such as WASP-12b (Teq ~ 2500 K) result in a transmission spectrum indicative of a cloudy atmosphere. We re-examine the temperature and pressure space occupied by these super-hot Jupiter atmospheres, to explore the role of the initial Al- and Ti-bearing condensates as the main source of cloud material. Due to the high temperatures a majority of the more common refractory material is not depleted into deeper layers and would remain in the vapor phase. The lack of depletion into deeper layers means that these materials with relatively low cloud masses can become significant absorbers in the upper atmosphere. We provide condensation curves for the initial Al- and Ti-bearing condensates that may be used to provide quantitative estimates of the effect of metallicity on cloud masses, as planets with metal-rich hosts potentially form more opaque clouds because more mass is available for condensation. Increased metallicity also pushes the point of condensation to hotter, deeper layers in the planetary atmosphere further increasing the density of the cloud. We suggest that planets around metal-rich hosts are more likely to have thick refractory clouds, and discuss the implication on the observed spectra of WASP-12b.Comment: Accepted for publication in MNRAS, 10 pages, 1 table, 5 figure

    High Temperature Condensate Clouds in Super-Hot Jupiter Atmospheres

    Get PDF
    Deciphering the role of clouds is central to our understanding of exoplanet atmo- spheres, as they have a direct impact on the temperature and pressure structure, and observational properties of the planet. Super-hot Jupiters occupy a temperature regime similar to low mass M-dwarfs, where minimal cloud condensation is expected. However, observations of exoplanets such as WASP-12b (Teq∼2500 K) result in a transmission spectrum indicative of a cloudy atmosphere. We re-examine the temperature and pressure space occupied by these super-hot Jupiter atmospheres, to explore the role of the initial Al- and Ti-bearing condensates as the main source of cloud material. Due to the high temperatures a majority of the more common refractory material is not depleted into deeper layers and would remain in the vapor phase. The lack of depletion into deeper layers means that these materials with relatively low cloud masses can become significant absorbers in the upper atmosphere. We provide condensation curves for the initial Al- and Ti-bearing condensates that may be used to provide quantitative estimates of the effect of metallicity on cloud masses, as planets with metal-rich hosts potentially form more opaque clouds because more mass is available for condensation. Increased metallicity also pushes the point of condensation to hotter, deeper layers in the planetary atmosphere further increasing the density of the cloud. We suggest that planets around metal-rich hosts are more likely to have thick refractory clouds, and discuss the implication on the observed spectra of WASP-12b

    A comparative study of WASP-67b and HAT-P-38b from WFC3 data

    Get PDF
    Atmospheric temperature and planetary gravity are thought to be the main parameters affecting cloud formation in giant exoplanet atmospheres. Recent attempts to understand cloud formation have explored wide regions of the equilibrium temperature-gravity parameter space. In this study, we instead compare the case of two giant planets with nearly identical equilibrium temperature (TeqT_\mathrm{eq} 1050K\sim 1050 \, \mathrm{K}) and gravity (g10ms1)g \sim 10 \, \mathrm{m \, s}^{-1}). During HSTHST Cycle 23, we collected WFC3/G141 observations of the two planets, WASP-67 b and HAT-P-38 b. HAT-P-38 b, with mass 0.42 MJ_\mathrm{J} and radius 1.4 RJR_\mathrm{J}, exhibits a relatively clear atmosphere with a clear detection of water. We refine the orbital period of this planet with new observations, obtaining P=4.6403294±0.0000055dP = 4.6403294 \pm 0.0000055 \, \mathrm{d}. WASP-67 b, with mass 0.27 MJ_\mathrm{J} and radius 0.83 RJR_\mathrm{J}, shows a more muted water absorption feature than that of HAT-P-38 b, indicating either a higher cloud deck in the atmosphere or a more metal-rich composition. The difference in the spectra supports the hypothesis that giant exoplanet atmospheres carry traces of their formation history. Future observations in the visible and mid-infrared are needed to probe the aerosol properties and constrain the evolutionary scenario of these planets.Comment: 16 pages, 17 figures, 8 tables, accepted for publication in The Astronomical Journa

    Assessing the reliability of dose coefficients for exposure to radioiodine by members of the public, accounting for dosimetric and risk model uncertainties

    Get PDF
    Assessments of risk to a specific population group resulting from internal exposure to a particular radionuclide can be used to assess the reliability of the appropriate International Commission on Radiological Protection (ICRP) dose coefficients used as a radiation protection device for the specified exposure pathway. An estimate of the uncertainty on the associated risk is important for informing judgments on reliability; a derived uncertainty factor, UF, is an estimate of the 95% probable geometric difference between the best risk estimate and the nominal risk and is a useful tool for making this assessment. This paper describes the application of parameter uncertainty analysis to quantify uncertainties resulting from internal exposures to radioiodine by members of the public, specifically 1, 10 and 20-year old females from the population of England and Wales. Best estimates of thyroid cancer incidence risk (lifetime attributable risk) are calculated for ingestion or inhalation of 129I and 131I, accounting for uncertainties in biokinetic model and cancer risk model parameter values. These estimates are compared with the equivalent ICRP derived nominal age-, sex- and population-averaged estimates of excess thyroid cancer incidence to obtain UFs. Derived UF values for ingestion or inhalation of 131I for 1 year, 10-year and 20-year olds are around 28, 12 and 6, respectively, when compared with ICRP Publication 103 nominal values, and 9, 7 and 14, respectively, when compared with ICRP Publication 60 values. Broadly similar results were obtained for 129I. The uncertainties on risk estimates are largely determined by uncertainties on risk model parameters rather than uncertainties on biokinetic model parameters. An examination of the sensitivity of the results to the risk models and populations used in the calculations show variations in the central estimates of risk of a factor of around 2–3. It is assumed that the direct proportionality of excess thyroid cancer risk and dose observed at low to moderate acute doses and incorporated in the risk models also applies to very small doses received at very low dose rates; the uncertainty in this assumption is considerable, but largely unquantifiable. The UF values illustrate the need for an informed approach to the use of ICRP dose and risk coefficients
    corecore