45,329 research outputs found
Entangled photon apparatus for the undergraduate laboratory
We present detailed instructions for constructing and operating an apparatus
to produce and detect polarization-entangled photons. The source operates by
type-I spontaneous parametric downconversion in a two-crystal geometry. Photons
are detected in coincidence by single-photon counting modules and show strong
angular and polarization correlations. We observe more than 100 entangled
photon pairs per second. A test of a Bell inequality can be performed in an
afternoon.Comment: 6 pages, 9 figure
Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator
We demonstrate a diode-laser-pumped system for generation of quadrature
squeezing and polarization squeezing. Due to their excess phase noise, diode
lasers are challenging to use in phase-sensitive quantum optics experiments
such as quadrature squeezing. The system we present overcomes the phase noise
of the diode laser through a combination of active stabilization and
appropriate delays in the local oscillator beam. The generated light is
resonant to the rubidium D1 transition at 795nm and thus can be readily used
for quantum memory experiments.Comment: 6 pages 4 figure
A Generic Algorithm for IACT Optical Efficiency Calibration using Muons
Muons produced in Extensive Air Showers (EAS) generate ring-like images in
Imaging Atmospheric Cherenkov Telescopes when travelling near parallel to the
optical axis. From geometrical parameters of these images, the absolute amount
of light emitted may be calculated analytically. Comparing the amount of light
recorded in these images to expectation is a well established technique for
telescope optical efficiency calibration. However, this calculation is usually
performed under the assumption of an approximately circular telescope mirror.
The H.E.S.S. experiment entered its second phase in 2012, with the addition of
a fifth telescope with a non-circular 600m mirror. Due to the differing
mirror shape of this telescope to the original four H.E.S.S. telescopes,
adaptations to the standard muon calibration were required. We present a
generalised muon calibration procedure, adaptable to telescopes of differing
shapes and sizes, and demonstrate its performance on the H.E.S.S. II array.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherland
Nonlinear metrology with a quantum interface
We describe nonlinear quantum atom-light interfaces and nonlinear quantum
metrology in the collective continuous variable formalism. We develop a
nonlinear effective Hamiltonian in terms of spin and polarization collective
variables and show that model Hamiltonians of interest for nonlinear quantum
metrology can be produced in Rb ensembles. With these Hamiltonians,
metrologically relevant atomic properties, e.g. the collective spin, can be
measured better than the "Heisenberg limit" . In contrast to other
proposed nonlinear metrology systems, the atom-light interface allows both
linear and non-linear estimation of the same atomic quantities.Comment: 8 pages, 1 figure
- …