12 research outputs found

    Membrane-association of mRNA decapping factors is independent of stress in budding yeast

    Get PDF
    Recent evidence has suggested that the degradation of mRNA occurs on translating ribosomes or alternatively within RNA granules called P bodies, which are aggregates whose core constituents are mRNA decay proteins and RNA. In this study, we examined the mRNA decapping proteins, Dcp1, Dcp2, and Dhh1, using subcellular fractionation. We found that decapping factors co-sediment in the polysome fraction of a sucrose gradient and do not alter their behaviour with stress, inhibition of translation or inhibition of the P body formation. Importantly, their localisation to the polysome fraction is independent of the RNA, suggesting that these factors may be constitutively localised to the polysome. Conversely, polysomal and post-polysomal sedimentation of the decapping proteins was abolished with the addition of a detergent, which shifts the factors to the non-translating RNP fraction and is consistent with membrane association. Using a membrane flotation assay, we observed the mRNA decapping factors in the lower density fractions at the buoyant density of membrane-associated proteins. These observations provide further evidence that mRNA decapping factors interact with subcellular membranes, and we suggest a model in which the mRNA decapping factors interact with membranes to facilitate regulation of mRNA degradation

    RNA remodeling and gene regulation by cold shock proteins

    No full text
    One of the many important consequences that temperature down-shift has on cells is stabilization of secondary structures of RNAs. This stabilization has wide-spread effects, such as inhibition of expression of several genes due to termination of their transcription and inefficient RNA degradation that adversely affect cell growth at low temperature. Several cold shock proteins are produced to counteract these effects and thus allow cold acclimatization of the cell. The main RNA modulating cold shock proteins of E. coli can be broadly divided into two categories, (i) the CspA family proteins, which mainly affect the transcription and possibly translation at low temperature through their RNA chaperoning function and (ii) RNA helicases and exoribonucleases that stimulate RNA degradation at low temperature through their RNA unwinding activity
    corecore