7,084 research outputs found
Formation of a reliable intermediate band in Si heavily coimplanted with chalcogens (S, Se, Te) and group III elements (B, Al)
This first-principles study describes the properties of Si implanted with several chalcogen species (S, Se, Te) at doses considerably above the equilibrium solubility limit, especially when coimplanted with the group III atoms B and Al. The measurements of chalcogen-implanted Si show strong optical absorption in the infrared range. The calculations carried out show that substitution of Si by chalcogen atoms requires lower formation energy than the interstitial implantation. In the resulting electronic structure, at concentrations close to 0.5%, an impurity band determined by the properties of the chalcogens introduced is observed in the forbidden energy gap of Si. Although this band is a few tenths of an electron volt wide, it remains energetically isolated from both the valence and the conduction bands. Appropriate coimplantation with group III elements allows control over the occupation of the intermediate band while modifying its energies only slightly. A moderate energy gain (especially small for B) seems to be obtained when p-doping atoms occupy the sites next to those of the chalcogens. Therefore, the apparent electrostatic attraction between species that in isolation would act as acceptors and double donors is smaller than expected. The intermediate-band properties have been preserved for all of the coimplanted compounds analyzed here, regardless of the species involved or the distance between them, which constitutes an appreciable advantage for the design of new experimental materials
An ab
Article on an ab initio study of the ionization of sodium superoxide
Complex edge effects in zigzag graphene nanoribbons due to hydrogen loading
We have performed density functional calculations as well as employed a
tight-binding theory, to study the effect of passivation of zigzag graphene
nanoribbons (ZGNR) by Hydrogen. We show that each edge C atom bonded with 2 H
atoms open up a gap and destroys magnetism for small widths of the nanoribbon.
However, a re-entrant magnetism accompanied by a metallic electronic structure
is observed from 8 rows and thicker nanoribbons. The electronic structure and
magnetic state are quite complex for this type of termination, with sp
bonded edge atoms being non-magnetic, whereas the nearest neighboring atoms are
metallic and magnetic. We have also evaluated the phase stability of several
thicknesses of ZGNR, and demonstrate that sp bonded edge atoms, with 2 H
atoms at the edge, should be stable at temperatures and pressures which are
reachable in a laboratory environment.Comment: 11 figure
Efficient feedback controllers for continuous-time quantum error correction
We present an efficient approach to continuous-time quantum error correction
that extends the low-dimensional quantum filtering methodology developed by van
Handel and Mabuchi [quant-ph/0511221 (2005)] to include error recovery
operations in the form of real-time quantum feedback. We expect this paradigm
to be useful for systems in which error recovery operations cannot be applied
instantaneously. While we could not find an exact low-dimensional filter that
combined both continuous syndrome measurement and a feedback Hamiltonian
appropriate for error recovery, we developed an approximate reduced-dimensional
model to do so. Simulations of the five-qubit code subjected to the symmetric
depolarizing channel suggests that error correction based on our approximate
filter performs essentially identically to correction based on an exact quantum
dynamical model
Chemical Equilibrium Abundances in Brown Dwarf and Extrasolar Giant Planet Atmospheres
We calculate detailed chemical abundance profiles for a variety of brown
dwarf and extrasolar giant planet atmosphere models, focusing in particular on
Gliese 229B, and derive the systematics of the changes in the dominant
reservoirs of the major elements with altitude and temperature. We assume an
Anders and Grevesse (1989) solar composition of 27 chemical elements and track
330 gas--phase species, including the monatomic forms of the elements, as well
as about 120 condensates. We address the issue of the formation and composition
of clouds in the cool atmospheres of substellar objects and explore the rain
out and depletion of refractories. We conclude that the opacity of clouds of
low--temperature (900 K), small--radius condensibles (specific chlorides
and sulfides), may be responsible for the steep spectrum of Gliese 229B
observed in the near infrared below 1 \mic. Furthermore, we assemble a
temperature sequence of chemical transitions in substellar atmospheres that may
be used to anchor and define a sequence of spectral types for substellar
objects with Ts from 2200 K to 100 K.Comment: 57 pages total, LaTeX, 14 figures, 5 tables, also available in
uuencoded, gzipped, and tarred form via anonymous ftp at
www.astrophysics.arizona.edu (cd to pub/burrows/chem), submitted to Ap.
Transition of amorphous to crystalline oxide film in initial oxide overgrowth on liquid metals
It is important to understand the mechanism of oxidation in the initial stage on the free surface of liquid metals. Mittemeijer and co-workers recently developed a thermodynamic model to study the oxide overgrowth on a solid metal surface. Based on this model, we have developed a thermodynamic model to analyse the thermodynamic stability of oxide overgrowth on liquid metals. The thermodynamic model calculation revealed that the amorphous oxide phase is thermodynamically preferred up to 1.3 and 0.35 nm respectively, in the initial oxide overgrowth on liquid Al and Ga at the corresponding melting point. However, the amorphous phase is thermodynamically unstable in the initial oxide overgrowth on liquid Mg. The thermodynamic stability of amorphous phase in the Al and Ga oxide systems is attributed to lower sums of surface and interfacial energies for amorphous phases, compared to that of the corresponding crystalline phases.Financial support under grant EP/H026177/1 from the EPSRC was used
- …