262 research outputs found
Recommended from our members
Preliminary site report for the 2005 ICDP-USGS deep corehole in the Chesapeake Bay impact crater
First report for the ICDP-USGS 1.7-km-deep corehole drilled into the central part of the Chesapeake Bay impact crater during 2005
Prefrontal Cortex Lesions Impair Object-Spatial Integration
How and where object and spatial information are perceptually integrated in the brain is a central question in visual cognition. Single-unit physiology, scalp EEG, and fMRI research suggests that the prefrontal cortex (PFC) is a critical locus for object-spatial integration. To test the causal participation of the PFC in an object-spatial integration network, we studied ten patients with unilateral PFC damage performing a lateralized object-spatial integration task. Consistent with single-unit and neuroimaging studies, we found that PFC lesions result in a significant behavioral impairment in object-spatial integration. Furthermore, by manipulating inter-hemispheric transfer of object-spatial information, we found that masking of visual transfer impairs performance in the contralesional visual field in the PFC patients. Our results provide the first evidence that the PFC plays a key, causal role in an object-spatial integration network. Patient performance is also discussed within the context of compensation by the non-lesioned PFC
Impact of Space Weather on Climate and Habitability of Terrestrial Type Exoplanets
The current progress in the detection of terrestrial type exoplanets has
opened a new avenue in the characterization of exoplanetary atmospheres and in
the search for biosignatures of life with the upcoming ground-based and space
missions. To specify the conditions favorable for the origin, development and
sustainment of life as we know it in other worlds, we need to understand the
nature of astrospheric, atmospheric and surface environments of exoplanets in
habitable zones around G-K-M dwarfs including our young Sun. Global environment
is formed by propagated disturbances from the planet-hosting stars in the form
of stellar flares, coronal mass ejections, energetic particles, and winds
collectively known as astrospheric space weather. Its characterization will
help in understanding how an exoplanetary ecosystem interacts with its host
star, as well as in the specification of the physical, chemical and biochemical
conditions that can create favorable and/or detrimental conditions for
planetary climate and habitability along with evolution of planetary internal
dynamics over geological timescales. A key linkage of (astro) physical,
chemical, and geological processes can only be understood in the framework of
interdisciplinary studies with the incorporation of progress in heliophysics,
astrophysics, planetary and Earth sciences. The assessment of the impacts of
host stars on the climate and habitability of terrestrial (exo)planets will
significantly expand the current definition of the habitable zone to the
biogenic zone and provide new observational strategies for searching for
signatures of life. The major goal of this paper is to describe and discuss the
current status and recent progress in this interdisciplinary field and to
provide a new roadmap for the future development of the emerging field of
exoplanetary science and astrobiology.Comment: 206 pages, 24 figures, 1 table; Review paper. International Journal
of Astrobiology (2019
Assessing Needs for Gerontological Education in Urban and Rural Areas of Ohio
Purpose of the Study: This project surveyed health care professionals from both urban and rural care settings in Ohio and examined differences in professionals’ needs and interests in continuing gerontological education. Design and Methods: The survey data were analyzed for 766 health care professionals descriptively, using cross-tabulations and c2 tests. Results: The key findings were that professionals are willing to drive a maximum time of one-hour per week to travel one way to attend classes/workshops to earn gerontology certificate among both urban and rural drivers [(4,N=514)=11.65,p=.020]. Distance learning was the most preferred method for furthering gerontological education for both urban (39%) and rural (49%) participants. One quarter or fewer of the professionals were interested in obtaining a master’s degree. Of slightly greater interest was pursuit of a graduate gerontology certificate (25% urban and 28% rural). It is concluded that there is a need and desire for professionals working with aging populations in Ohio to pursue additional education. Preferences for obtaining education inform us of the ways in which education can best be delivered. Implications: Youngstown State University can apply to increase gerontological education access in both urban and rural areas. Such educational opportunities will be a great service to the urban and rural areas of the aging population in the state of Ohio
Determination of z~0.8 neutral hydrogen fluctuations using the 21 cm intensity mapping auto-correlation
The large-scale distribution of neutral hydrogen in the Universe will be
luminous through its 21 cm emission. Here, for the first time, we use the
auto-power spectrum of 21 cm intensity fluctuations to constrain neutral
hydrogen fluctuations at z~0.8. Our data were acquired with the Green Bank
Telescope and span the redshift range 0.6 < z < 1 over two fields totalling ~41
deg. sq. and 190 h of radio integration time. The dominant synchrotron
foregrounds exceed the signal by ~10^3, but have fewer degrees of freedom and
can be removed efficiently. Even in the presence of residual foregrounds, the
auto-power can still be interpreted as an upper bound on the 21 cm signal. Our
previous measurements of the cross-correlation of 21 cm intensity and the
WiggleZ galaxy survey provide a lower bound. Through a Bayesian treatment of
signal and foregrounds, we can combine both fields in auto- and cross-power
into a measurement of Omega_HI b_HI = [0.62^{+0.23}_{-0.15}] * 10^{-3} at 68%
confidence with 9% systematic calibration uncertainty, where Omega_HI is the
neutral hydrogen (HI) fraction and b_HI is the HI bias parameter. We describe
observational challenges with the present data set and plans to overcome them.Comment: 5 pages, 3 figures. v2 as published; MNRASL (2013
The O/OREOS Mission - Astrobiology in Low Earth Orbit
The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small- Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cu.cm) modules: (i) a control bus, (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment, and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for micro-organisms at 3 times during the 6-month mission. We will report on the spacecraft characteristics, payload capabilities and first operational phase of the O/OREOS mission. The science and technology rationale of O/OREOS supports NASAs scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities
Diversity and quantity of ammonia-oxidizing Archaea and Bacteria in sediment of the Pearl River Estuary, China
The diversity and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the sediment of the Pearl River Estuary were investigated by cloning and quantitative real-time polymerase chain reaction (qPCR). From one sediment sample S16, 36 AOA OTUs (3% cutoff) were obtained from three clone libraries constructed using three primer sets for amoA gene. Among the 36 OTUs, six were shared by all three clone libraries, two appeared in two clone libraries, and the other 28 were only recovered in one of the libraries. For AOB, only seven OTUs (based on 16S rRNA gene) and eight OTUs (based on amoA gene) were obtained, showing lower diversity than AOA. The qPCR results revealed that AOA amoA gene copy numbers ranged from 9.6 × 106 to 5.1 × 107 copies per gram of sediment and AOB amoA gene ranged from 9.5 × 104 to 6.2 × 105 copies per gram of sediment, indicating that the dominant ammonia-oxidizing microorganisms in the sediment of the Pearl River Estuary were AOA. The terminal restriction fragment length polymorphism results showed that the relative abundance of AOB species in the sediment samples of different salinity were significantly different, indicating that salinity might be a key factor shaping the AOB community composition
Recommended from our members
From mechanisms to markers: novel noninvasive EEG proxy markers of the neural excitation and inhibition system in humans.
Brain function is a product of the balance between excitatory and inhibitory (E/I) brain activity. Variation in the regulation of this activity is thought to give rise to normal variation in human traits, and disruptions are thought to potentially underlie a spectrum of neuropsychiatric conditions (e.g., Autism, Schizophrenia, Downs' Syndrome, intellectual disability). Hypotheses related to E/I dysfunction have the potential to provide cross-diagnostic explanations and to combine genetic and neurological evidence that exists within and between psychiatric conditions. However, the hypothesis has been difficult to test because: (1) it lacks specificity-an E/I dysfunction could pertain to any level in the neural system- neurotransmitters, single neurons/receptors, local networks of neurons, or global brain balance - most researchers do not define the level at which they are examining E/I function; (2) We lack validated methods for assessing E/I function at any of these neural levels in humans. As a result, it has not been possible to reliably or robustly test the E/I hypothesis of psychiatric disorders in a large cohort or longitudinal patient studies. Currently available, in vivo markers of E/I in humans either carry significant risks (e.g., deep brain electrode recordings or using Positron Emission Tomography (PET) with radioactive tracers) and/or are highly restrictive (e.g., limited spatial extent for Transcranial Magnetic Stimulation (TMS) and Magnetic Resonance Spectroscopy (MRS). More recently, a range of novel Electroencephalography (EEG) features has been described, which could serve as proxy markers for E/I at a given level of inference. Thus, in this perspective review, we survey the theories and experimental evidence underlying 6 novel EEG markers and their biological underpinnings at a specific neural level. These cheap-to-record and scalable proxy markers may offer clinical utility for identifying subgroups within and between diagnostic categories, thus directing more tailored sub-grouping and, therefore, treatment strategies. However, we argue that studies in clinical populations are premature. To maximize the potential of prospective EEG markers, we first need to understand the link between underlying E/I mechanisms and measurement techniques
- …