67 research outputs found

    Price Prediction in a Trading Agent Competition

    Full text link
    The 2002 Trading Agent Competition (TAC) presented a challenging market game in the domain of travel shopping. One of the pivotal issues in this domain is uncertainty about hotel prices, which have a significant influence on the relative cost of alternative trip schedules. Thus, virtually all participants employ some method for predicting hotel prices. We survey approaches employed in the tournament, finding that agents apply an interesting diversity of techniques, taking into account differing sources of evidence bearing on prices. Based on data provided by entrants on their agents' actual predictions in the TAC-02 finals and semifinals, we analyze the relative efficacy of these approaches. The results show that taking into account game-specific information about flight prices is a major distinguishing factor. Machine learning methods effectively induce the relationship between flight and hotel prices from game data, and a purely analytical approach based on competitive equilibrium analysis achieves equal accuracy with no historical data. Employing a new measure of prediction quality, we relate absolute accuracy to bottom-line performance in the game

    Notes on Equilibria in Symmetric Games

    Get PDF
    In a symmetric game, every player is identical with respect to the game rules. We show that a symmetric 2strategy game must have a pure-strategy Nash equilibrium. We also discuss Nash’s original paper and its generalized notion of symmetry in games. As a special case of Nash’s theorem, any finite symmetric game has a symmetric Nash equilibrium. Furthermore, symmetric infinite games with compact, convex strategy spaces and continuous, quasiconcave utility functions have symmetric pure-strategy Nash equilibria. Finally, we discuss how to exploit symmetry for more efficient methods of finding Nash equilibria. 1

    Behavioral dynamics and influence in networked coloring and consensus

    Get PDF
    We report on human-subject experiments on the problems of coloring (a social differentiation task) and consensus (a social agreement task) in a networked setting. Both tasks can be viewed as coordination games, and despite their cognitive similarity, we find that within a parameterized family of social networks, network structure elicits opposing behavioral effects in the two problems, with increased long-distance connectivity making consensus easier for subjects and coloring harder. We investigate the influence that subjects have on their network neighbors and the collective outcome, and find that it varies considerably, beyond what can be explained by network position alone. We also find strong correlations between influence and other features of individual subject behavior. In contrast to much of the recent research in network science, which often emphasizes network topology out of the context of any specific problem and places primacy on network position, our findings highlight the potential importance of the details of tasks and individuals in social networks

    Automated mechanism design in infinite games of incomplete information: Framework and applications

    No full text
    We present a functional framework for automated Bayesian and robust mechanism design based on a two-stage game model of strategic interaction between the designer and the mechanism participants, and apply it to several classes of two-player infinite games of incomplete information. Our approach yields optimal or nearly optimal mechanisms in three application domains using various objective functions. By comparing our results with known optimal mechanisms, and in some cases improving on the best known mechanisms, we show that ours is a promising approach to parametric design of indirect mechanisms.
    • …
    corecore