3 research outputs found

    Power dependent switching of nonlinear trapping by local photonic potentials

    Full text link
    We study experimentally and numerically the nonlinear scattering of wave packets by local multi-site guiding centers embedded in a continuous dielectric medium, as a function of the input power and angle of incidence. The extent of trapping into the linear modes of different sites is manipulated as a function of both the input power and incidence angle, demonstrating power-controlled switching of nonlinear trapping by local photonic potentials.Comment: Submitted to Optics Letter

    Observation Of Pt-Symmetry Breaking In Complex Optical Potentials

    No full text
    In 1998, Bender and Boettcher found that a wide class of Hamiltonians, even though non-Hermitian, can still exhibit entirely real spectra provided that they obey parity-time requirements or PT symmetry. Here we demonstrate experimentally passive PT-symmetry breaking within the realm of optics. This phase transition leads to a loss induced optical transparency in specially designed pseudo-Hermitian guiding potentials. © 2009 The American Physical Society
    corecore