7,337 research outputs found

    A map for heavy inertial particles in fluid flows

    Full text link
    We introduce a map which reproduces qualitatively many fundamental properties of the dynamics of heavy particles in fluid flows. These include a uniform rate of decrease of volume in phase space, a slow-manifold effective dynamics when the single parameter ss (analogous of the Stokes number) approaches zero, the possibility of fold caustics in the "velocity field", and a minimum, as a function of ss, of the Lyapunov (Kaplan-Yorke) dimension of the attractor where particles accumulate.Comment: 10 pages, 5 figure

    Büchwald-Hartwig reaction applied to synthesis of new luminescent liquid crystal triarylamines derived from isoxazoles

    Get PDF
    © 2015 Taylor & Francis Group, LLC. The present work describes the synthesis and characterization of novel series of triarylamines isoxazoles (TAA) addressed to the organic photovoltaic materials. Diarylisoxazoles were synthesized by sequential [3+2] 1,3-dipolar cycloaddition reaction between arylnitrile oxides and selected arylalkenes followed by MnO2-oxidation. Isoxazoles were coupled to diarylamines by Büchwald-Hartwig reaction to afford desired compounds 6a-k. Some TAA display liquid-crystalline behaviour and UV-Vis absorption and fluorescence emission were analysed for all samples of TAA 6a-k

    Linear Form of 3-scale Relativity Algebra and the Relevance of Stability

    Full text link
    We show that the algebra of the recently proposed Triply Special Relativity can be brought to a linear (ie, Lie) form by a correct identification of its generators. The resulting Lie algebra is the stable form proposed by Vilela Mendes a decade ago, itself a reapparition of Yang's algebra, dating from 1947. As a corollary we assure that, within the Lie algebra framework, there is no Quadruply Special Relativity.Comment: 5 page

    Geometry, stochastic calculus and quantum fields in a non-commutative space-time

    Full text link
    The algebras of non-relativistic and of classical mechanics are unstable algebraic structures. Their deformation towards stable structures leads, respectively, to relativity and to quantum mechanics. Likewise, the combined relativistic quantum mechanics algebra is also unstable. Its stabilization requires the non-commutativity of the space-time coordinates and the existence of a fundamental length constant. The new relativistic quantum mechanics algebra has important consequences on the geometry of space-time, on quantum stochastic calculus and on the construction of quantum fields. Some of these effects are studied in this paper.Comment: 36 pages Latex, 1 eps figur

    Stratification of the orbit space in gauge theories. The role of nongeneric strata

    Full text link
    Gauge theory is a theory with constraints and, for that reason, the space of physical states is not a manifold but a stratified space (orbifold) with singularities. The classification of strata for smooth (and generalized) connections is reviewed as well as the formulation of the physical space as the zero set of a momentum map. Several important features of nongeneric strata are discussed and new results are presented suggesting an important role for these strata as concentrators of the measure in ground state functionals and as a source of multiple structures in low-lying excitations.Comment: 22 pages Latex, 1 figur

    Lie Superalgebra Stability and Branes

    Full text link
    The algebra of the generators of translations in superspace is unstable, in the sense that infinitesimal perturbations of its structure constants lead to non-isomorphic algebras. We show how superspace extensions remedy this situation (after arguing that remedy is indeed needed) and review the benefits reaped in the description of branes of all kinds in the presence of the extra dimensions.Comment: Talk given at the conference ``Brane New World and Non-commutative Geometry'', held in Torino, October 2000. To appear in the proceedings by World Scientific. 10 pages, 1 figur

    Stability Analysis of a Hybrid Cellular Automaton Model of Cell Colony Growth

    Full text link
    Cell colonies of bacteria, tumour cells and fungi, under nutrient limited growth conditions, exhibit complex branched growth patterns. In order to investigate this phenomenon we present a simple hybrid cellular automaton model of cell colony growth. In the model the growth of the colony is limited by a nutrient that is consumed by the cells and which inhibits cell division if it falls below a certain threshold. Using this model we have investigated how the nutrient consumption rate of the cells affects the growth dynamics of the colony. We found that for low consumption rates the colony takes on a Eden-like morphology, while for higher consumption rates the morphology of the colony is branched with a fractal geometry. These findings are in agreement with previous results, but the simplicity of the model presented here allows for a linear stability analysis of the system. By observing that the local growth of the colony is proportional to the flux of the nutrient we derive an approximate dispersion relation for the growth of the colony interface. This dispersion relation shows that the stability of the growth depends on how far the nutrient penetrates into the colony. For low nutrient consumption rates the penetration distance is large, which stabilises the growth, while for high consumption rates the penetration distance is small, which leads to unstable branched growth. When the penetration distance vanishes the dispersion relation is reduced to the one describing Laplacian growth without ultra-violet regularisation. The dispersion relation was verified by measuring how the average branch width depends on the consumption rate of the cells and shows good agreement between theory and simulations.Comment: 8 pages, 6 figure
    corecore