1,451 research outputs found

    Virtues and Flaws of the Pauli Potential

    Get PDF
    Quantum simulations of complex fermionic systems suffer from a variety of challenging problems. In an effort to circumvent these challenges, simpler ``semi-classical'' approaches have been used to mimic fermionic correlations through a fictitious ``Pauli potential''. In this contribution we examine two issues. First, we address some of the inherent difficulties in a widely used version of the Pauli potential. Second, we refine such a potential in a manner consistent with the most basic properties of a cold Fermi gas, such as its momentum distribution and its two-body correlation function.Comment: 16 pages, 6 figure

    Using Dissolved Organic Carbon Concentration and Character Data to Assess Land Use Change Effects on Coastal Waters

    Get PDF
    2016 South Carolina Water Resources Conference South Carolina Water Resources at a Crossroads: Response, Readiness and Recover

    Creating Open Digital Library Using XML: Implementation of OAi-PMH Protocol at CERN

    Get PDF
    This article describes the implementation of the OAi-PMH protocol within the CERN Document Server (CDS). In terms of the protocol, CERN acts both as a data provider and service provider and the two core applications are described. The application of XML Schema and XSLT technology is emphasized

    Cooperative Dynamics in Unentangled Polymer Fluids

    Full text link
    We present a Generalized Langevin Equation for the dynamics of interacting semiflexible polymer chains, undergoing slow cooperative dynamics. The calculated Gaussian intermolecular center-of-mass and monomer potentials, wich enter the GLE, are in quantitative agreement with computer simulation data. The experimentally observed, short-time subdiffusive regime of the polymer mean-square displacements, emerges here from the competition between the intramolecular and the intermolecular mean-force potentials.Comment: 9 pages, latex, 3 figure

    Proton fraction in the inner neutron-star crust

    Full text link
    Monte Carlo simulations of neutron-rich matter of relevance to the inner neutron-star crust are performed for a system of A=5,000 nucleons. To determine the proton fraction in the inner crust, numerical simulations are carried out for a variety of densities and proton fractions. We conclude---as others have before us using different techniques---that the proton fraction in the inner stellar crust is very small. Given that the purported "nuclear pasta" phase in stellar crusts develops as a consequence of the long-range Coulomb interaction among protons, we question whether pasta formation is possible in such proton-poor environments. To answer this question, we search for physical observables sensitive to the transition between spherical nuclei and exotic pasta structures. Of particular relevance is the static structure factor S(k)---an observable sensitive to density fluctuations. However, no dramatic behavior was observed in S(k). We regard the identification of physical observables sensitive to the existence---or lack-thereof---of a pasta phase in proton-poor environments as an open problem of critical importance.Comment: 24 pages and 7 figure

    Nonuniform Neutron-Rich Matter and Coherent Neutrino Scattering

    Full text link
    Nonuniform neutron-rich matter present in both core-collapse supernovae and neutron-star crusts is described in terms of a semiclassical model that reproduces nuclear-matter properties and includes long-range Coulomb interactions. The neutron-neutron correlation function and the corresponding static structure factor are calculated from molecular dynamics simulations involving 40,000 to 100,000 nucleons. The static structure factor describes coherent neutrino scattering which is expected to dominate the neutrino opacity. At low momentum transfers the static structure factor is found to be small because of ion screening. In contrast, at intermediate momentum transfers the static structure factor displays a large peak due to coherent scattering from all the neutrons in a cluster. This peak moves to higher momentum transfers and decreases in amplitude as the density increases. A large static structure factor at zero momentum transfer, indicative of large density fluctuations during a first-order phase transition, may increase the neutrino opacity. However, no evidence of such an increase has been found. Therefore, it is unlikely that the system undergoes a simple first-order phase transition. It is found that corrections to the commonly used single heavy nucleus approximation first appear at a density of the order of 101310^{13} g/cm3^3 and increase rapidly with increasing density. Thus, neutrino opacities are overestimated in the single heavy nucleus approximation relative to the complete molecular dynamics simulations.Comment: 17 pages, 23 included ps figure

    All-electron GW calculation based on the LAPW method: application to wurtzite ZnO

    Full text link
    We present a new, all-electron implementation of the GW approximation and apply it to wurtzite ZnO. Eigenfunctions computed in the local-density approximation (LDA) by the full-potential linearized augmented-plane-wave (LAPW) or the linearized muffin-tin-orbital (LMTO) method supply the input for generating the Green function G and the screened Coulomb interaction W. A mixed basis is used for the expansion of W, consisting of plane waves in the interstitial region and augmented-wavefunction products in the augmentation-sphere regions. The frequency-dependence of the dielectric function is computed within the random-phase approximation (RPA), without a plasmon-pole approximation. The Zn 3d orbitals are treated as valence states within the LDA; both core and valence states are included in the self-energy calculation. The calculated bandgap is smaller than experiment by about 1eV, in contrast to previously reported GW results. Self-energy corrections are orbital-dependent, and push down the deep O 2s and Zn 3d levels by about 1eV relative to the LDA. The d level shifts closer to experiment but the size of shift is underestimated, suggesting that the RPA overscreens localized states.Comment: 10 pages, 3 figures, submitted to Phys. Rev.

    Plumo: An Ultralight Blockchain Client

    Get PDF
    Syncing the latest state of a blockchain can be a resource-intensive task, driving (especially mobile) end users towards centralized services offering instant access. To expand full decentralized access to anyone with a mobile phone, we introduce a consensus-agnostic compiler for constructing ultralight clients, providing secure and highly efficient blockchain syncing via a sequence of SNARK-based state transition proofs, and prove its security formally. Instantiating this, we present Plumo, an ultralight client for the Celo blockchain capable of syncing the latest network state summary in just a few seconds even on a low-end mobile phone. In Plumo, each transition proof covers four months of blockchain history and can be produced for just $25 USD of compute. Plumo achieves this level of efficiency thanks to two new SNARK-friendly constructions, which may also be of independent interest: a new BLS-based offline aggregate multisignature scheme in which signers do not have to know the members of their multisignature group in advance, and a new composite algebraic-symmetric cryptographic hash function
    • …
    corecore