326 research outputs found

    A Possible Role for Short Introns in the Acquisition of Stroma-Targeting Peptides in the Flagellate Euglena gracilis

    Get PDF
    The chloroplasts of Euglena gracilis bounded by three membranes arose via secondary endosymbiosis of a green alga in a heterotrophic euglenozoan host. Many genes were transferred from symbiont to the host nucleus. A subset of Euglena nuclear genes of predominately symbiont, but also host, or other origin have obtained complex presequences required for chloroplast targeting. This study has revealed the presence of short introns (41–93 bp) either in the second half of presequence-encoding regions or shortly downstream of them in nine nucleus-encoded E. gracilis genes for chloroplast proteins (Eno29, GapA, PetA, PetF, PetJ, PsaF, PsbM, PsbO, and PsbW). In addition, the E. gracilis Pbgd gene contains two introns in the second half of presequence-encoding region and one at the border of presequence-mature peptide-encoding region. Ten of 12 introns present within presequence-encoding regions or shortly downstream of them identified in this study have typical eukaryotic GT/AG borders, are T-rich, 45–50 bp long, and pairwise sequence identities range from 27 to 61%. Thus single recombination events might have been mediated via these cis-spliced introns. A double crossing over between these cis-spliced introns and trans-spliced introns present in 5′-UTRs of Euglena nuclear genes is also likely to have occurred. Thus introns and exon-shuffling could have had an important role in the acquisition of chloroplast targeting signals in E. gracilis. The results are consistent with a late origin of photosynthetic euglenids

    AMBEATion: Analog Mixed-Signal Back-End Design Automation with Machine Learning and Artificial Intelligence Techniques

    Get PDF
    For the competitiveness of the European economy, automation techniques in the design of complex electronic systems are a prerequisite for winning the global chip challenge. Specifically, while the physical design of digital Integrated Circuits (ICs) can be largely automated, the physical design of Analog-Mixed-Signal (AMS) ICs built with an analog-on-top flow, where digital subsystems are instantiated as Intellectual Property (IP) modules, is still carried out predominantly by hand, with a time-consuming methodology. The AMBEATion consortium, including global semiconductor and design automation companies as well as leading universities, aims to address this challenge by combining classic Electronic Design Automation (EDA) algorithms with novel Artificial Intelligence and Machine Learning (ML) techniques. Specifically, the scientific and technical result expected at the end of the project will be a new methodology, implemented in a framework of scripts for AMS placement, internally making use of state-of-the-art AI/ML models, and fully integrated with Industrial design flows. With this methodology, the AMBEATion consortium aims to reduce the design turnaround-time and, consequently, the silicon development costs of complex AMS ICs

    Multiwavelength study of the galactic PeVatron candidate LHAASO J2108+5157

    Get PDF
    Context. Several new ultrahigh-energy (UHE) γ-ray sources have recently been discovered by the Large High Altitude Air Shower Observatory (LHAASO) collaboration. These represent a step forward in the search for the so-called Galactic PeVatrons, the enigmatic sources of the Galactic cosmic rays up to PeV energies. However, it has been shown that multi-TeV γ-ray emission does not necessarily prove the existence of a hadronic accelerator in the source; indeed this emission could also be explained as inverse Compton scattering from electrons in a radiation-dominated environment. A clear distinction between the two major emission mechanisms would only be made possible by taking into account multi-wavelength data and detailed morphology of the source. Aims. We aim to understand the nature of the unidentified source LHAASO J2108+5157, which is one of the few known UHE sources with no very high-energy (VHE) counterpart. Methods. We observed LHAASO J2108+5157 in the X-ray band with XMM-Newton in 2021 for a total of 3.8 hours and at TeV energies with the Large-Sized Telescope prototype (LST-1), yielding 49 hours of good-quality data. In addition, we analyzed 12 years of Fermi-LAT data, to better constrain emission of its high-energy (HE) counterpart 4FGL J2108.0+5155. We used naima and jetset software packages to examine the leptonic and hadronic scenario of the multi-wavelength emission of the source. Results. We found an excess (3.7σ) in the LST-1 data at energies E > 3 TeV. Further analysis of the whole LST-1 energy range, assuming a point-like source, resulted in a hint (2.2σ) of hard emission, which can be described with a single power law with a photon index of Σ = 1.6 ± 0.2 the range of 0.3 - 100 TeV. We did not find any significant extended emission that could be related to a supernova remnant (SNR) or pulsar wind nebula (PWN) in the XMM-Newton data, which puts strong constraints on possible synchrotron emission of relativistic electrons. We revealed a new potential hard source in Fermi-LAT data with a significance of 4σ and a photon index of Σ = 1.9 ± 0.2, which is not spatially correlated with LHAASO J2108+5157, but including it in the source model we were able to improve spectral representation of the HE counterpart 4FGL J2108.0+5155. Conclusions. The LST-1 and LHAASO observations can be explained as inverse Compton-dominated leptonic emission of relativistic electrons with a cutoff energy of 100-30+70 TeV. The low magnetic field in the source imposed by the X-ray upper limits on synchrotron emission is compatible with a hypothesis of a PWN or a TeV halo. Furthermore, the spectral properties of the HE counterpart are consistent with a Geminga-like pulsar, which would be able to power the VHE-UHE emission. Nevertheless, the lack of a pulsar in the neighborhood of the UHE source is a challenge to the PWN/TeV-halo scenario. The UHE γ rays can also be explained as π0 decay-dominated hadronic emission due to interaction of relativistic protons with one of the two known molecular clouds in the direction of the source. Indeed, the hard spectrum in the LST-1 band is compatible with protons escaping a shock around a middle-aged SNR because of their high low-energy cut-off, but the origin of the HE γ-ray emission remains an open question

    Observations of the Crab Nebula and Pulsar with the Large-sized Telescope Prototype of the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) is a next-generation ground-based observatory for gamma-ray astronomy at very high energies. The Large-Sized Telescope prototype (LST-1) is located at the CTA-North site, on the Canary Island of La Palma. LSTs are designed to provide optimal performance in the lowest part of the energy range covered by CTA, down to ≃20 GeV. LST-1 started performing astronomical observations in 2019 November, during its commissioning phase, and it has been taking data ever since. We present the first LST-1 observations of the Crab Nebula, the standard candle of very-high-energy gamma-ray astronomy, and use them, together with simulations, to assess the performance of the telescope. LST-1 has reached the expected performance during its commissioning period—only a minor adjustment of the preexisting simulations was needed to match the telescope’s behavior. The energy threshold at trigger level is around 20 GeV, rising to ≃30 GeV after data analysis. Performance parameters depend strongly on energy, and on the strength of the gamma-ray selection cuts in the analysis: angular resolution ranges from 0.°12-0.°40, and energy resolution from 15%-50%. Flux sensitivity is around 1.1% of the Crab Nebula flux above 250 GeV for a 50 hr observation (12% for 30 minutes). The spectral energy distribution (in the 0.03-30 TeV range) and the light curve obtained for the Crab Nebula agree with previous measurements, considering statistical and systematic uncertainties. A clear periodic signal is also detected from the pulsar at the center of the Nebula

    Star tracking for pointing determination of Imaging Atmospheric Cherenkov Telescopes: Application to the Large-Sized Telescope of the Cherenkov Telescope Array

    Get PDF
    We present a novel approach to the determination of the pointing of Imaging Atmospheric Cherenkov Telescopes (IACTs) using the trajectories of the stars in their camera s field of view. The method starts with the reconstruction of the star positions from the Cherenkov camera data, taking into account the point spread function of the telescope, to achieve a satisfying reconstruction accuracy of the pointing position. A simultaneous fit of all reconstructed star trajectories is then performed with the orthogonal distance regression (ODR) method. ODR allows us to correctly include the star position uncertainties and use the time as an independent variable. Having the time as an independent variable in the fit makes it better suitable for various star trajectories. This method can be applied to any IACT and requires neither specific hardware nor interface or special data-taking mode. In this paper, we use the Large-Sized Telescope (LST) data to validate it as a useful tool to improve the determination of the pointing direction during regular data taking. The simulation studies show that the accuracy and precision of the method are comparable with the design requirements on the pointing accuracy of the LST (=14''). With the typical LST event acquisition rate of 10 kHz, the method can achieve up to 50 Hz pointing monitoring rate, compared to O(1) Hz achievable with standard techniques. The application of the method to the LST prototype (LST-1) commissioning data shows the stable pointing performance of the telescope

    Observations of the Crab Nebula and Pulsar with the Large-Sized Telescope Prototype of the Cherenkov Telescope Array

    Full text link
    CTA (Cherenkov Telescope Array) is the next generation ground-based observatory for gamma-ray astronomy at very-high energies. The Large-Sized Telescope prototype (\LST{}) is located at the Northern site of CTA, on the Canary Island of La Palma. LSTs are designed to provide optimal performance in the lowest part of the energy range covered by CTA, down to 20\simeq 20 GeV. \LST{} started performing astronomical observations in November 2019, during its commissioning phase, and it has been taking data since then. We present the first \LST{} observations of the Crab Nebula, the standard candle of very-high energy gamma-ray astronomy, and use them, together with simulations, to assess the basic performance parameters of the telescope. The data sample consists of around 36 hours of observations at low zenith angles collected between November 2020 and March 2022. \LST{} has reached the expected performance during its commissioning period - only a minor adjustment of the preexisting simulations was needed to match the telescope behavior. The energy threshold at trigger level is estimated to be around 20 GeV, rising to 30\simeq 30 GeV after data analysis. Performance parameters depend strongly on energy, and on the strength of the gamma-ray selection cuts in the analysis: angular resolution ranges from 0.12 to 0.40 degrees, and energy resolution from 15 to 50\%. Flux sensitivity is around 1.1\% of the Crab Nebula flux above 250 GeV for a 50-h observation (12\% for 30 minutes). The spectral energy distribution (in the 0.03 - 30 TeV range) and the light curve obtained for the Crab Nebula agree with previous measurements, considering statistical and systematic uncertainties. A clear periodic signal is also detected from the pulsar at the center of the Nebula.Comment: Submitted to Ap

    Design, upgrade and characterization of the silicon photomultiplier front-end for the AMIGA detector at the Pierre Auger Observatory

    Get PDF
    AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory to complement the study of ultra-high-energy cosmic rays (UHECR) by measuring the muon content of extensive air showers (EAS). It consists of an array of 61 water Cherenkov detectors on a denser spacing in combination with underground scintillation detectors used for muon density measurement. Each detector is composed of three scintillation modules, with 10 m2^2 detection area per module, buried at 2.3 m depth, resulting in a total detection area of 30 m2^2. Silicon photomultiplier sensors (SiPM) measure the amount of scintillation light generated by charged particles traversing the modules. In this paper, the design of the front-end electronics to process the signals of those SiPMs and test results from the laboratory and from the Pierre Auger Observatory are described. Compared to our previous prototype, the new electronics shows a higher performance, higher efficiency and lower power consumption, and it has a new acquisition system with increased dynamic range that allows measurements closer to the shower core. The new acquisition system is based on the measurement of the total charge signal that the muonic component of the cosmic ray shower generates in the detector.Comment: 40 pages, 33 figure

    Sensitivity of the Cherenkov Telescope Array to TeV photon emission from the Large Magellanic Cloud

    Get PDF
    A deep survey of the Large Magellanic Cloud at ∼0.1-100 TeV photon energies with the Cherenkov Telescope Array is planned. We assess the detection prospects based on a model for the emission of the galaxy, comprising the four known TeV emitters, mock populations of sources, and interstellar emission on galactic scales. We also assess the detectability of 30 Doradus and SN 1987A, and the constraints that can be derived on the nature of dark matter. The survey will allow for fine spectral studies of N 157B, N 132D, LMC P3, and 30 Doradus C, and half a dozen other sources should be revealed, mainly pulsar-powered objects. The remnant from SN 1987A could be detected if it produces cosmic-ray nuclei with a flat power-law spectrum at high energies, or with a steeper index 2.3-2.4 pending a flux increase by a factor of >3-4 over ∼2015-2035. Large-scale interstellar emission remains mostly out of reach of the survey if its >10 GeV spectrum has a soft photon index ∼2.7, but degree-scale 0.1-10 TeV pion-decay emission could be detected if the cosmic-ray spectrum hardens above >100 GeV. The 30 Doradus star-forming region is detectable if acceleration efficiency is on the order of 1−10 per cent of the mechanical luminosity and diffusion is suppressed by two orders of magnitude within <100 pc. Finally, the survey could probe the canonical velocity-averaged cross-section for self-annihilation of weakly interacting massive particles for cuspy Navarro-Frenk-White profiles

    Status and performance of the underground muon detector of the Pierre Auger Observatory

    Get PDF
    The Auger Muons and Infill for the Ground Array (AMIGA) is an enhancement of the Pierre Auger Observatory, whose purpose is to lower the energy threshold of the observatory down to 1016.5 eV, and to measure the muonic content of air showers directly. These measurements will significantly contribute to the determination of primary particle masses in the range between the second knee and the ankle, to the study of hadronic interaction models with air showers, and, in turn, to the understanding of the muon puzzle. The underground muon detector of AMIGA is concomitant to two triangular grids of water-Cherenkov stations with spacings of 433 and 750 m; each grid position is equipped with a 30 m2 plastic scintillator buried at 2.3 m depth. After the engineering array completion in early 2018 and general improvements to the design, the production phase commenced. In this work, we report on the status of the underground muon detector, the progress of its deployment, and the performance achieved after two years of operation. The detector construction is foreseen to finish by mid-2022

    Measurement of the cosmic-ray energy spectrum above 2.5 x 10(18) eV using the Pierre Auger Observatory

    Get PDF
    We report a measurement of the energy spectrum of cosmic rays for energies above 2.5×1018^{18} eV based on 215,030 events recorded with zenith angles below 60°. A key feature of the work is that the estimates of the energies are independent of assumptions about the unknown hadronic physics or of the primary mass composition. The measurement is the most precise made hitherto with the accumulated exposure being so large that the measurements of the flux are dominated by systematic uncertainties except at energies above 5×1019^{19} eV. The principal conclusions are (1) The flattening of the spectrum near 5×1018^{18} eV, the so-called “ankle,” is confirmed. (2) The steepening of the spectrum at around 5×10Z19^{Z19} eV is confirmed. (3) A new feature has been identified in the spectrum: in the region above the ankle the spectral index γ of the particle flux (∝Eγ^{−γ }) changes from 2.51±0.03 (stat)±0.05 (syst) to 3.05±0.05 (stat)±0.10 (syst) before changing sharply to 5.1±0.3 (stat)±0.1 (syst) above 5×1019^{19} eV. (4) No evidence for any dependence of the spectrum on declination has been found other than a mild excess from the Southern Hemisphere that is consistent with the anisotropy observed above 8×1018^{18} eV
    corecore