18 research outputs found

    West Nile Fever in the Rostov Region: Ecological and Epidemiological Peculiarities of the Outbreak in 2010

    Get PDF
    This paper describes the outbreak of West Nile fever in the Rostov Region in 2010 and evaluates its ecological and epidemiological peculiarities. From 15th of July till 22nd of September 2010, detected were the 64 cases (1, 4800/0000) of the disease, which were characterized by vector-born mechanism of transmission. Peak of morbidity coincided with mass breeding of Culicidae, increase in the number of Culex mosquitoes, and reoccurring growth of Aedes mosquito population. Diffuse type of the epidemiological process, higher rates of the cases among urbanites, infected in the country-side area, were the characteristic features of that outbreak. West Nile virus antigen was detected by means of IFA in samples taken from An. maculipennis and Cx. pipiens mosquitoes, wild and synanthropic birds, Rh. rossicus ticks, house and wood mice, which facilitates identification of the core factors for the agent circulation and West Nile fever natural focus formation

    ECOLOGICAL AND EPIDEMIOLOGICAL ASPECTS OF WEST NILE FEVER IN THE ROSTOV REGION

    Get PDF
    RETRACTEDPurpose: Th e study of the West Nile Fever (WNF) with the estimation of results of ecological/epizootological monitoring and epidemic manifestations of infection.Materials and methods: investigations for the presence of antigen of WN virus were carried out on 5754 specimen (4187 samples of brain suspensions) of birds belonging to 90 species, 15 orders; 4153 specimen (1038 samples of brain suspensions) of 17 species of mammals; 46113 specimen (2081) of 18 species of mosquitoes; 13883 specimen (1588) of imago ticks of six species, and others (2001-2013). Methods used: enzyme-linked immunosorbent assay, epidemiological analysis.Results: the territories of risk for WNF were defi ned with regard to bird ecology, fauna of mosquitoes of Culicidae family was characterized, the ecological linkages of WN virus with birds, mosquitoes and mammals were defi ned. Th e area of habitation of West Nile (WN) virus was determined. Epizootological/epidemiological zoning of the Rostov Region was carried out with identifi cation of territories, diff ering by the degree of risk of population infection with WN virus.Summary: Th e results obtained can serve the evidence of formation of natural and anthropurgic foci of WNF

    High Abundance Proteins Depletion vs Low Abundance Proteins Enrichment: Comparison of Methods to Reduce the Plasma Proteome Complexity

    Get PDF
    BACKGROUND: To date, the complexity of the plasma proteome exceeds the analytical capacity of conventional approaches to isolate lower abundance proteins that may prove to be informative biomarkers. Only complex multistep separation strategies have been able to detect a substantial number of low abundance proteins (<100 ng/ml). The first step of these protocols is generally the depletion of high abundance proteins by the use of immunoaffinity columns or, alternatively, the enrichment of by the use of solid phase hexapeptides ligand libraries. METHODOLOGY/PRINCIPAL FINDINGS: Here we present a direct comparison of these two approaches. Following either approach, the plasma sample was further fractionated by SCX chromatography and analyzed by RP-LC-MS/MS with a Q-TOF mass spectrometer. The depletion of the 20 most abundant plasma proteins allowed the identification of about 25% more proteins than those detectable following low abundance proteins enrichment. The two datasets are partially overlapping and the identified proteins belong to the same order of magnitude in terms of plasma concentration. CONCLUSIONS/SIGNIFICANCE: Our results show that the two approaches give complementary results. However, the enrichment of low abundance proteins has the great advantage of obtaining much larger amount of material that can be used for further fractionations and analyses and emerges also as a cheaper and technically simpler approach. Collectively, these data indicate that the enrichment approach seems more suitable as the first stage of a complex multi-step fractionation protocol

    Molecular Markers of Hemorrhagic Stroke

    Get PDF
    Π˜Π½ΡΡƒΠ»ΡŒΡ‚ являСтся Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΏΠΎ частотС ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΠΎΠΉ смСрти Π² ΠΌΠΈΡ€Π΅ послС ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΠΈ сСрдца (Π˜Π‘Π‘) ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ ΠΏΠΎ частотС развития инвалидности.ЦСль: выявлСниС закономСрностСй содСрТания ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚Π½Ρ‹Ρ… молСкулярных ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² Π² сывороткС ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ стадии гСморрагичСского ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚Π°.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Число ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с гСморрагичСским ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚ΠΎΠΌ составило 33, ΠΈΠ· Π½ΠΈΡ… ΠΌΡƒΠΆΡ‡ΠΈΠ½ 15, ΠΆΠ΅Π½Ρ‰ΠΈΠ½ 18. Возраст ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² β€” 31-65 Π»Π΅Ρ‚. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π΅ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Ρ‹ ЦНБ Π² сывороткС ΠΊΡ€ΠΎΠ²ΠΈ опрСдСляли Π² ΠΎΡΡ‚Ρ€Π΅ΠΉΡˆΠ΅ΠΉ стадии Ρ‡Π΅Ρ€Π΅Π· 1-3 часа, 7, 14 ΠΈ 30 Π΄Π½Π΅ΠΉ ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° заболСвания. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ ΠΎΡ†Π΅Π½ΠΊΡƒ содСрТания ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚Π½Ρ‹Ρ… молСкулярных ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² поврСТдСния Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π½Π΅Ρ€Π²Π½ΠΎΠΉ систСмы (ЦНБ) Π² сывороткС ΠΊΡ€ΠΎΠ²ΠΈ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с гСморрагичСским ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚ΠΎΠΌ осущСствляли ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Π² ΠΎΡΡ‚Ρ€Π΅ΠΉΡˆΠ΅ΠΉ стадии Ρ‡Π΅Ρ€Π΅Π· 1-3 часа, Π·Π°Ρ‚Π΅ΠΌ β€” 7, 14 ΠΈ 30 Π΄Π½Π΅ΠΉ ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° заболСвания. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»ΠΈ нСйротрофичСский Ρ„Π°ΠΊΡ‚ΠΎΡ€ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°, Π½Π΅ΠΉΡ€ΠΎΠ½ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π΅Π½ΠΎ-Π»Π°Π·Ρƒ, Π±Π΅Π»ΠΎΠΊ S-100 ΠΎΠ±Ρ‰ΠΈΠΉ, Π³Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ нСйротрофичСский Ρ„Π°ΠΊΡ‚ΠΎΡ€, Π²Π°ΡΠΊΡƒΠ»ΠΎΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚ΠΎΡ€ роста, сиалированный ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½Ρ‹ΠΉ Π°Π½Ρ‚ΠΈΠ³Π΅Π½, супСроксиддисмутазу. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π΅ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Ρ‹ ЦНБ выявляли с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ автоматичСского ΠΌΠΈΠΊΡ€ΠΎΠΏΠ»Π°Π½ΡˆΠ΅Ρ‚Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π° Immuno-mat ВМ. ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΡƒΡŽ Π³Ρ€ΡƒΠΏΠΏΡƒ составили 20 Π΄ΠΎΠ±Ρ€ΠΎΠ²ΠΎΠ»ΡŒΡ†Π΅Π² Π² возрастС 24-58 Π»Π΅Ρ‚. БтатистичСский Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΠΏΠ°ΠΊΠ΅Ρ‚Π° Statistica 7,0. Использовали парамСтричСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ статистичСского Π°Π½Π°Π»ΠΈΠ·Π°, Π΄Π°Π½Π½Ρ‹Π΅ прСдставили Π² Π²ΠΈΠ΄Π΅ ΠΌΠ΅Π΄ΠΈΠ°Π½Ρ‹ 25-75 ΠΏΠ΅Ρ€Ρ†Π΅Π½Ρ‚ΠΈΠ»Π΅ΠΉ (25-75 IQR). БтатистичСски Π·Π½Π°Ρ‡ΠΈΠΌΡ‹ΠΌ считали Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠ΅ ΠΏΡ€ΠΈ p&lt;0,05.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. По ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π³Ρ€ΡƒΠΏΠΏΠΎΠΉ контроля Π² сыворотках ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с гСморрагичСским ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚ΠΎΠΌ ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ содСрТания исслСдуСмых ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚Π½Ρ‹Ρ… молСкулярных ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ². Π’ ΠΎΡΡ‚Ρ€Π΅ΠΉΡˆΠ΅ΠΉ стадии гСморрагичСского ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚Π° (1-3 часа ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° заболСвания) рСгистрировали статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ΅ возрастаниС содСрТания Π±Π΅Π»ΠΊΠ° S100, глиального нСйротрофичСского Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°, Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° роста эндотСлия сосудов, супСроксиддисмутазы, сиалированного ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π°Π½Ρ‚ΠΈΠ³Π΅Π½Π°, Π° сниТСниС содСрТания ΠΌΠΎΠ·Π³ΠΎΠ²ΠΎΠ³ΠΎ нСйротрофичСского Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ содСрТания Π½Π΅ΠΉΡ€ΠΎΠ½-спСци-фичСской Π΅Π½ΠΎΠ»Π°Π·Ρ‹ Π±Ρ‹Π»ΠΎ статистичСски нСдостовСрным. Π’ острой стадии гСморрагичСского ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚Π° (7-14 Π΄Π½Π΅ΠΉ) ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΈ статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ΅ сниТСниС содСрТания ΠΌΠΎΠ·Π³ΠΎΠ²ΠΎΠ³ΠΎ нСйротрофичСского Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° (14 дСнь), ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ содСрТания Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° роста эндотСлия, супСроксиддисмутазы, сиалиро-Π²Π°Π½Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π°Π½Ρ‚ΠΈΠ³Π΅Π½Π°. Π’ подострой стадии заболСвания (30 суток) рСгистрировали статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ΅ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ содСрТания Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° роста эндотСлия, супСроксиддисмутазы ΠΈ сиалиро-Π²Π°Π½Π½Π³ΠΎ ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π°Π½Ρ‚ΠΈΠ³Π΅Π½Π°.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π˜Π·ΡƒΡ‡ΠΈΠ»ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡƒ содСрТания ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚Π½Ρ‹Ρ… молСкулярных ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² Π² сывороткС ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с гСморрагичСским ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚ΠΎΠΌ, которая, вСроятно, ΠΎΡ‚Ρ€Π°ΠΆΠ°Π΅Ρ‚ процСссы Π°Π»ΡŒΡ‚Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ стадиям заболСвания. ИспользованиС Π΄Π°Π½Π½Ρ‹Ρ… ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚Π½Ρ‹Ρ… молСкулярных Π±ΠΈΠΎΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ², послС ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Π²Π°Π»ΠΈΠ΄Π°Ρ†ΠΈΠΈ, пСрспСктивно Π² комплСксной диагностикС, ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π΅ лСчСния ΠΈ Ρ€Π΅Π°Π±ΠΈΠ»ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… мСроприятий Ρƒ Π΄Π°Π½Π½ΠΎΠΉ ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ²

    Experience of Organizational-Preventive Measures in Rostov Region in the Influenza Epidemic Season of 2015 - 2016

    Get PDF
    The complex of actions is presented carried out by the Local Administration of Russian Federal Consumer Rights Protection and Human Welfare Supervision Service in the Rostov Region together with the Ministry of Health of the Rostov Region and Center of Hygiene and Epidemiology in the Rostov Region, aimed at the prevention of influenza and acute respiratory viral infections and including: organizational work, results of epidemiological surveillance during interepidemic and epidemic periods with the epidemiological situation assessment, managerial decision-making on the basis of the results obtained, as well as working with reference-centers. The epidemic rise of incidence in the season of 2015 - 2016 was more intensive judging by the majority of characteristics in comparison with the previous period. The main etiological agent of infection was influenza virus A(H1N1)pdm09 characterized by the early onset of epidemic rise from mid-January 2016, the lesser engagement of children from 3 to 6 years of age into epidemic process but maximal engagement of schoolchildren aged 7 - 14, by the higher rate of disease development, higher per cent of hospitalized with influenza diagnosis, and maximal number of deceased at the peak of epidemic

    Simultaneous serum desalting and total protein determination by macroporous reversed-phase chromatography

    No full text
    <p>Macroporous reversed-phase (mRP) chromatography was successfully used to develop an accurate and precise method for total protein in serum. The limits of detection (0.83 mu g, LOD) and quantification (2.51 mu g, LOQ) for the mRP method are comparable with those of the widely used micro BCA protein assay. The mRP method can be used to determine the total protein concentration across a wide dynamic range by detecting chromatographic peaks at 215 nm and 280 nm. The method has the added advantage of desalting and denaturing proteins, leading to more complete digestion by trypsin and to better LC-MS-MS identification in shotgun proteomics experiments.</p>
    corecore