18 research outputs found
West Nile Fever in the Rostov Region: Ecological and Epidemiological Peculiarities of the Outbreak in 2010
This paper describes the outbreak of West Nile fever in the Rostov Region in 2010 and evaluates its ecological and epidemiological peculiarities. From 15th of July till 22nd of September 2010, detected were the 64 cases (1, 4800/0000) of the disease, which were characterized by vector-born mechanism of transmission. Peak of morbidity coincided with mass breeding of Culicidae, increase in the number of Culex mosquitoes, and reoccurring growth of Aedes mosquito population. Diffuse type of the epidemiological process, higher rates of the cases among urbanites, infected in the country-side area, were the characteristic features of that outbreak. West Nile virus antigen was detected by means of IFA in samples taken from An. maculipennis and Cx. pipiens mosquitoes, wild and synanthropic birds, Rh. rossicus ticks, house and wood mice, which facilitates identification of the core factors for the agent circulation and West Nile fever natural focus formation
ECOLOGICAL AND EPIDEMIOLOGICAL ASPECTS OF WEST NILE FEVER IN THE ROSTOV REGION
RETRACTEDPurpose: Th e study of the West Nile Fever (WNF) with the estimation of results of ecological/epizootological monitoring and epidemic manifestations of infection.Materials and methods: investigations for the presence of antigen of WN virus were carried out on 5754 specimen (4187 samples of brain suspensions) of birds belonging to 90 species, 15 orders; 4153 specimen (1038 samples of brain suspensions) of 17 species of mammals; 46113 specimen (2081) of 18 species of mosquitoes; 13883 specimen (1588) of imago ticks of six species, and others (2001-2013). Methods used: enzyme-linked immunosorbent assay, epidemiological analysis.Results: the territories of risk for WNF were defi ned with regard to bird ecology, fauna of mosquitoes of Culicidae family was characterized, the ecological linkages of WN virus with birds, mosquitoes and mammals were defi ned. Th e area of habitation of West Nile (WN) virus was determined. Epizootological/epidemiological zoning of the Rostov Region was carried out with identifi cation of territories, diff ering by the degree of risk of population infection with WN virus.Summary: Th e results obtained can serve the evidence of formation of natural and anthropurgic foci of WNF
High Abundance Proteins Depletion vs Low Abundance Proteins Enrichment: Comparison of Methods to Reduce the Plasma Proteome Complexity
BACKGROUND:
To date, the complexity of the plasma proteome exceeds the analytical capacity of conventional approaches to isolate lower abundance proteins that may prove to be informative biomarkers. Only complex multistep separation strategies have been able to detect a substantial number of low abundance proteins (<100 ng/ml). The first step of these protocols is generally the depletion of high abundance proteins by the use of immunoaffinity columns or, alternatively, the enrichment of by the use of solid phase hexapeptides ligand libraries.
METHODOLOGY/PRINCIPAL FINDINGS:
Here we present a direct comparison of these two approaches. Following either approach, the plasma sample was further fractionated by SCX chromatography and analyzed by RP-LC-MS/MS with a Q-TOF mass spectrometer. The depletion of the 20 most abundant plasma proteins allowed the identification of about 25% more proteins than those detectable following low abundance proteins enrichment. The two datasets are partially overlapping and the identified proteins belong to the same order of magnitude in terms of plasma concentration.
CONCLUSIONS/SIGNIFICANCE:
Our results show that the two approaches give complementary results. However, the enrichment of low abundance proteins has the great advantage of obtaining much larger amount of material that can be used for further fractionations and analyses and emerges also as a cheaper and technically simpler approach. Collectively, these data indicate that the enrichment approach seems more suitable as the first stage of a complex multi-step fractionation protocol
Molecular Markers of Hemorrhagic Stroke
ΠΠ½ΡΡΠ»ΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ Π²ΡΠΎΡΠΎΠΉ ΠΏΠΎ ΡΠ°ΡΡΠΎΡΠ΅ ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ ΡΠΌΠ΅ΡΡΠΈ Π² ΠΌΠΈΡΠ΅ ΠΏΠΎΡΠ»Π΅ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΡΠ΅ΡΠ΄ΡΠ° (ΠΠΠ‘) ΠΈ ΡΡΠ΅ΡΡΠ΅ΠΉ ΠΏΠΎ ΡΠ°ΡΡΠΎΡΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΈΠ½Π²Π°Π»ΠΈΠ΄Π½ΠΎΡΡΠΈ.Π¦Π΅Π»Ρ: Π²ΡΡΠ²Π»Π΅Π½ΠΈΠ΅ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΠ΅ΠΉ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΊΠ°Π½Π΄ΠΈΠ΄Π°ΡΠ½ΡΡ
ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ
ΠΌΠ°ΡΠΊΠ΅ΡΠΎΠ² Π² ΡΡΠ²ΠΎΡΠΎΡΠΊΠ΅ ΠΊΡΠΎΠ²ΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΡΡΠ°Π΄ΠΈΠΈ Π³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ½ΡΡΠ»ΡΡΠ°.ΠΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. Π§ΠΈΡΠ»ΠΎ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΈΠ½ΡΡΠ»ΡΡΠΎΠΌ ΡΠΎΡΡΠ°Π²ΠΈΠ»ΠΎ 33, ΠΈΠ· Π½ΠΈΡ
ΠΌΡΠΆΡΠΈΠ½ 15, ΠΆΠ΅Π½ΡΠΈΠ½ 18. ΠΠΎΠ·ΡΠ°ΡΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² β 31-65 Π»Π΅Ρ. ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΠ΅ ΠΌΠ°ΡΠΊΠ΅ΡΡ Π¦ΠΠ‘ Π² ΡΡΠ²ΠΎΡΠΎΡΠΊΠ΅ ΠΊΡΠΎΠ²ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ Π² ΠΎΡΡΡΠ΅ΠΉΡΠ΅ΠΉ ΡΡΠ°Π΄ΠΈΠΈ ΡΠ΅ΡΠ΅Π· 1-3 ΡΠ°ΡΠ°, 7, 14 ΠΈ 30 Π΄Π½Π΅ΠΉ ΠΎΡ Π½Π°ΡΠ°Π»Π° Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡ. ΠΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΠΎΡΠ΅Π½ΠΊΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΊΠ°Π½Π΄ΠΈΠ΄Π°ΡΠ½ΡΡ
ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ
ΠΌΠ°ΡΠΊΠ΅ΡΠΎΠ² ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΡ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΠΎΠΉ Π½Π΅ΡΠ²Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ (Π¦ΠΠ‘) Π² ΡΡΠ²ΠΎΡΠΎΡΠΊΠ΅ ΠΊΡΠΎΠ²ΠΈ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΈΠ½ΡΡΠ»ΡΡΠΎΠΌ ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΈΠΌΠΌΡΠ½ΠΎΡΠ΅ΡΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Π² ΠΎΡΡΡΠ΅ΠΉΡΠ΅ΠΉ ΡΡΠ°Π΄ΠΈΠΈ ΡΠ΅ΡΠ΅Π· 1-3 ΡΠ°ΡΠ°, Π·Π°ΡΠ΅ΠΌ β 7, 14 ΠΈ 30 Π΄Π½Π΅ΠΉ ΠΎΡ Π½Π°ΡΠ°Π»Π° Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡ. ΠΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ Π½Π΅ΠΉΡΠΎΡΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ°ΠΊΡΠΎΡ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°, Π½Π΅ΠΉΡΠΎΠ½ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΡΡ Π΅Π½ΠΎ-Π»Π°Π·Ρ, Π±Π΅Π»ΠΎΠΊ S-100 ΠΎΠ±ΡΠΈΠΉ, Π³Π»ΠΈΠ°Π»ΡΠ½ΡΠΉ Π½Π΅ΠΉΡΠΎΡΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ°ΠΊΡΠΎΡ, Π²Π°ΡΠΊΡΠ»ΠΎΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΠ°Π»ΡΠ½ΡΠΉ ΡΠ°ΠΊΡΠΎΡ ΡΠΎΡΡΠ°, ΡΠΈΠ°Π»ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΡΠ³Π»Π΅Π²ΠΎΠ΄Π½ΡΠΉ Π°Π½ΡΠΈΠ³Π΅Π½, ΡΡΠΏΠ΅ΡΠΎΠΊΡΠΈΠ΄Π΄ΠΈΡΠΌΡΡΠ°Π·Ρ. ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΠ΅ ΠΌΠ°ΡΠΊΠ΅ΡΡ Π¦ΠΠ‘ Π²ΡΡΠ²Π»ΡΠ»ΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠΈΠΊΡΠΎΠΏΠ»Π°Π½ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΈΠΌΠΌΡΠ½ΠΎΡΠ΅ΡΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°ΡΠΎΡΠ° Immuno-mat Π’Π. ΠΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΡΡ Π³ΡΡΠΏΠΏΡ ΡΠΎΡΡΠ°Π²ΠΈΠ»ΠΈ 20 Π΄ΠΎΠ±ΡΠΎΠ²ΠΎΠ»ΡΡΠ΅Π² Π² Π²ΠΎΠ·ΡΠ°ΡΡΠ΅ 24-58 Π»Π΅Ρ. Π‘ΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Π΄Π°Π½Π½ΡΡ
ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΠΏΠ°ΠΊΠ΅ΡΠ° Statistica 7,0. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°, Π΄Π°Π½Π½ΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΠ»ΠΈ Π² Π²ΠΈΠ΄Π΅ ΠΌΠ΅Π΄ΠΈΠ°Π½Ρ 25-75 ΠΏΠ΅ΡΡΠ΅Π½ΡΠΈΠ»Π΅ΠΉ (25-75 IQR). Π‘ΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΡΠΌ ΡΡΠΈΡΠ°Π»ΠΈ ΡΠ°Π·Π»ΠΈΡΠΈΠ΅ ΠΏΡΠΈ p<0,05.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π³ΡΡΠΏΠΏΠΎΠΉ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ Π² ΡΡΠ²ΠΎΡΠΎΡΠΊΠ°Ρ
ΠΊΡΠΎΠ²ΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΈΠ½ΡΡΠ»ΡΡΠΎΠΌ ΠΎΡΠΌΠ΅ΡΠ°Π»ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
ΠΊΠ°Π½Π΄ΠΈΠ΄Π°ΡΠ½ΡΡ
ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ
ΠΌΠ°ΡΠΊΠ΅ΡΠΎΠ². Π ΠΎΡΡΡΠ΅ΠΉΡΠ΅ΠΉ ΡΡΠ°Π΄ΠΈΠΈ Π³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ½ΡΡΠ»ΡΡΠ° (1-3 ΡΠ°ΡΠ° ΠΎΡ Π½Π°ΡΠ°Π»Π° Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡ) ΡΠ΅Π³ΠΈΡΡΡΠΈΡΠΎΠ²Π°Π»ΠΈ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΠΎΠ΅ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ Π±Π΅Π»ΠΊΠ° S100, Π³Π»ΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π΅ΠΉΡΠΎΡΡΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°ΠΊΡΠΎΡΠ°, ΡΠ°ΠΊΡΠΎΡΠ° ΡΠΎΡΡΠ° ΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΡ ΡΠΎΡΡΠ΄ΠΎΠ², ΡΡΠΏΠ΅ΡΠΎΠΊΡΠΈΠ΄Π΄ΠΈΡΠΌΡΡΠ°Π·Ρ, ΡΠΈΠ°Π»ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π°Π½ΡΠΈΠ³Π΅Π½Π°, Π° ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΌΠΎΠ·Π³ΠΎΠ²ΠΎΠ³ΠΎ Π½Π΅ΠΉΡΠΎΡΡΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°ΠΊΡΠΎΡΠ° ΠΈ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ Π½Π΅ΠΉΡΠΎΠ½-ΡΠΏΠ΅ΡΠΈ-ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΅Π½ΠΎΠ»Π°Π·Ρ Π±ΡΠ»ΠΎ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π½Π΅Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΡΠΌ. Π ΠΎΡΡΡΠΎΠΉ ΡΡΠ°Π΄ΠΈΠΈ Π³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ½ΡΡΠ»ΡΡΠ° (7-14 Π΄Π½Π΅ΠΉ) ΠΎΡΠΌΠ΅ΡΠ°Π»ΠΈ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΠΎΠ΅ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΌΠΎΠ·Π³ΠΎΠ²ΠΎΠ³ΠΎ Π½Π΅ΠΉΡΠΎΡΡΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°ΠΊΡΠΎΡΠ° (14 Π΄Π΅Π½Ρ), ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΡΠ°ΠΊΡΠΎΡΠ° ΡΠΎΡΡΠ° ΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΡ, ΡΡΠΏΠ΅ΡΠΎΠΊΡΠΈΠ΄Π΄ΠΈΡΠΌΡΡΠ°Π·Ρ, ΡΠΈΠ°Π»ΠΈΡΠΎ-Π²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π°Π½ΡΠΈΠ³Π΅Π½Π°. Π ΠΏΠΎΠ΄ΠΎΡΡΡΠΎΠΉ ΡΡΠ°Π΄ΠΈΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡ (30 ΡΡΡΠΎΠΊ) ΡΠ΅Π³ΠΈΡΡΡΠΈΡΠΎΠ²Π°Π»ΠΈ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΠΎΠ΅ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΡΠ°ΠΊΡΠΎΡΠ° ΡΠΎΡΡΠ° ΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΡ, ΡΡΠΏΠ΅ΡΠΎΠΊΡΠΈΠ΄Π΄ΠΈΡΠΌΡΡΠ°Π·Ρ ΠΈ ΡΠΈΠ°Π»ΠΈΡΠΎ-Π²Π°Π½Π½Π³ΠΎ ΡΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π°Π½ΡΠΈΠ³Π΅Π½Π°.ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΠ·ΡΡΠΈΠ»ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΊΠ°Π½Π΄ΠΈΠ΄Π°ΡΠ½ΡΡ
ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ
ΠΌΠ°ΡΠΊΠ΅ΡΠΎΠ² Π² ΡΡΠ²ΠΎΡΠΎΡΠΊΠ΅ ΠΊΡΠΎΠ²ΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΈΠ½ΡΡΠ»ΡΡΠΎΠΌ, ΠΊΠΎΡΠΎΡΠ°Ρ, Π²Π΅ΡΠΎΡΡΠ½ΠΎ, ΠΎΡΡΠ°ΠΆΠ°Π΅Ρ ΠΏΡΠΎΡΠ΅ΡΡΡ Π°Π»ΡΡΠ΅ΡΠ°ΡΠΈΠΈ ΠΈ ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ ΡΡΠ°Π΄ΠΈΡΠΌ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡ. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄Π°Π½Π½ΡΡ
ΠΊΠ°Π½Π΄ΠΈΠ΄Π°ΡΠ½ΡΡ
ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ
Π±ΠΈΠΎΠΌΠ°ΡΠΊΠ΅ΡΠΎΠ², ΠΏΠΎΡΠ»Π΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ Π²Π°Π»ΠΈΠ΄Π°ΡΠΈΠΈ, ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎ Π² ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ΅, ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π΅ Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΈ ΡΠ΅Π°Π±ΠΈΠ»ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
ΠΌΠ΅ΡΠΎΠΏΡΠΈΡΡΠΈΠΉ Ρ Π΄Π°Π½Π½ΠΎΠΉ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ²
Experience of Organizational-Preventive Measures in Rostov Region in the Influenza Epidemic Season of 2015 - 2016
The complex of actions is presented carried out by the Local Administration of Russian Federal Consumer Rights Protection and Human Welfare Supervision Service in the Rostov Region together with the Ministry of Health of the Rostov Region and Center of Hygiene and Epidemiology in the Rostov Region, aimed at the prevention of influenza and acute respiratory viral infections and including: organizational work, results of epidemiological surveillance during interepidemic and epidemic periods with the epidemiological situation assessment, managerial decision-making on the basis of the results obtained, as well as working with reference-centers. The epidemic rise of incidence in the season of 2015 - 2016 was more intensive judging by the majority of characteristics in comparison with the previous period. The main etiological agent of infection was influenza virus A(H1N1)pdm09 characterized by the early onset of epidemic rise from mid-January 2016, the lesser engagement of children from 3 to 6 years of age into epidemic process but maximal engagement of schoolchildren aged 7 - 14, by the higher rate of disease development, higher per cent of hospitalized with influenza diagnosis, and maximal number of deceased at the peak of epidemic
Simultaneous serum desalting and total protein determination by macroporous reversed-phase chromatography
<p>Macroporous reversed-phase (mRP) chromatography was successfully used to develop an accurate and precise method for total protein in serum. The limits of detection (0.83 mu g, LOD) and quantification (2.51 mu g, LOQ) for the mRP method are comparable with those of the widely used micro BCA protein assay. The mRP method can be used to determine the total protein concentration across a wide dynamic range by detecting chromatographic peaks at 215 nm and 280 nm. The method has the added advantage of desalting and denaturing proteins, leading to more complete digestion by trypsin and to better LC-MS-MS identification in shotgun proteomics experiments.</p>