517 research outputs found

    Three Dimensional Relativistic Electromagnetic Sub-cycle Solitons

    Full text link
    Three dimensional (3D) relativistic electromagnetic sub-cycle solitons were observed in 3D Particle-in-Cell simulations of an intense short laser pulse propagation in an underdense plasma. Their structure resembles that of an oscillating electric dipole with a poloidal electric field and a toroidal magnetic field that oscillate in-phase with the electron density with frequency below the Langmuir frequency. On the ion time scale the soliton undergoes a Coulomb explosion of its core, resulting in ion acceleration, and then evolves into a slowly expanding quasi-neutral cavity.Comment: 5 pages, 6 figures; http://www.ile.osaka-u.ac.jp/research/TSI/Timur/soliton/index.htm

    Radiation Pressure Dominate Regime of Relativistic Ion Acceleration

    Full text link
    The electromagnetic radiation pressure becomes dominant in the interaction of the ultra-intense electromagnetic wave with a solid material, thus the wave energy can be transformed efficiently into the energy of ions representing the material and the high density ultra-short relativistic ion beam is generated. This regime can be seen even with present-day technology, when an exawatt laser will be built. As an application, we suggest the laser-driven heavy ion collider.Comment: 10 pages, 4 figure

    Review of analytical instruments for EEG analysis

    Full text link
    Since it was first used in 1926, EEG has been one of the most useful instruments of neuroscience. In order to start using EEG data we need not only EEG apparatus, but also some analytical tools and skills to understand what our data mean. This article describes several classical analytical tools and also new one which appeared only several years ago. We hope it will be useful for those researchers who have only started working in the field of cognitive EEG

    Radiation Pressure Acceleration: the factors limiting maximum attainable ion energy

    Full text link
    Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case, finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it transparent for radiation and effectively terminating the acceleration. The off-normal incidence of the laser on the target, due either to the experimental setup, or to the deformation of the target, will also lead to establishing a limit on maximum ion energy.Comment: 17 pages, 6 figure

    Enhancing proton acceleration by using composite targets

    Full text link
    Efficient laser ion acceleration requires high laser intensities, which can only be obtained by tightly focusing laser radiation. In the radiation pressure acceleration regime, where the tightly focused laser driver leads to the appearance of the fundamental limit for the maximum attainable ion energy, this limit corresponds to the laser pulse group velocity as well as to another limit connected with the transverse expansion of the accelerated foil and consequent onset of the foil transparency. These limits can be relaxed by using composite targets, consisting of a thin foil followed by a near critical density slab. Such targets provide guiding of a laser pulse inside a self-generated channel and background electrons, being snowplowed by the pulse, compensate for the transverse expansion. The use of composite targets results in a significant increase in maximum ion energy, compared to a single foil target case.Comment: 16 pages, 9 figure
    • …
    corecore