229 research outputs found
Study of the correlation effects in Yb^+ and implications for parity violation
Calculation of the energies, magnetic dipole hyperfine structure constants,
E1 transition amplitudes between the low-lying states, and nuclear
spin-dependent parity-nonconserving amplitudes for the ^2S_{1/2} -
^2D_{3/2,5/2} transitions in ^{171}Yb^+ ion is performed using two different
approaches. First, we carried out many-body perturbation theory calculation
considering Yb^+ as a monovalent system. Additional all-order calculations are
carried out for selected properties. Second, we carried out configuration
interaction calculation considering Yb as a 15-electron system and compared the
results obtained by two methods. The accuracy of different methods is
evaluated. We find that the monovalent description is inadequate for evaluation
of some atomic properties due to significant mixing of the one-particle and the
hole-two-particle configurations. Performing the calculation by such different
approaches allowed us to establish the importance of various correlation
effects for Yb^+ atomic properties for future improvement of theoretical
precision in this complicated system.Comment: 11 pages;v2: minor changes and one reference adde
Mobility-Dependence of the Critical Density in Two-Dimensional Systems: An Empirical Relation
For five different electron and hole systems in two dimensions (Si MOSFET's,
p-GaAs, p-SiGe, n-GaAs and n-AlAs), the critical density, that marks the
onset of strong localization is shown to be a single power-law function of the
scattering rate deduced from the maximum mobility. The resulting curve
defines the boundary separating a localized phase from a phase that exhibits
metallic behavior. The critical density in the limit of infinite
mobility.Comment: 2 pages, 1 figur
Energy levels and radiative rates for transitions in Cr-like Co IV and Ni V
We report calculations of energy levels and radiative rates (-values) for
transitions in Cr-like Co IV and Ni V. The quasi-relativistic Hartree-Fock
(QRHF) code is adopted for calculating the data although GRASP (general-purpose
relativistic atomic structure package) and flexible atomic code (FAC) have also
been employed for comparison purposes. No radiative rates are available in the
literature to compare with our results, but our calculated energies are in
close agreement with those compiled by NIST for a majority of the levels.
However, there are discrepancies for a few levels of up to 3\%. The -values
are listed for all significantly contributing E1, E2 and M1 transitions, and
the corresponding lifetimes reported, although unfortunately no previous
theoretical or experimental results exist to compare with our data.Comment: The paper will appear in ADNDT (2016) and in October 2015 on the we
The atomic electric dipole moment induced by the nuclear electric dipole moment; the magnetic moment effect
We have considered a mechanism for inducing a time-reversal violating
electric dipole moment (EDM) in atoms through the interaction of a nuclear EDM
(d_N) with the hyperfine interaction, the "magnetic moment effect". We have
derived the operator for this interaction and presented analytical formulas for
the matrix elements between atomic states. Induced EDMs in the diamagnetic
atoms 129Xe, 171Yb, 199Hg, 211Rn, and 225Ra have been calculated numerically.
From the experimental limits on the atomic EDMs of 129Xe and 199Hg, we have
placed the following constraints on the nuclear EDMs, |d_N(129Xe)|< 1.1 *
10^{-21} |e|cm and |d_N(199Hg)|< 2.8 * 10^{-24} |e|cm.Comment: 8 pages 1) Some typos are corrected. 2) A comparison of contributions
to the atomic EDM due to the nuclear EDM and the nuclear Schiff moment is
adde
Rate‐determining steps of oxygen surface exchange kinetics on Sr2Fe1.5Mo0.5O6−δ
The oxygen surface kinetics of Sr2Fe1.5Mo0.5O6−δ was determined using the 16O2/18O2 isotope exchange method with gas phase analysis at 600-800 °C. The heterogeneous exchange rates (rH) and the oxygen diffusion coefficients (D) were calculated by processing the concentration dependences of the 18O fraction using Ezin's model. The rates of oxygen dissociative adsorption (ra) and incorporation (ri) were calculated based on a model using the three exchange type rates. It has been established that the rates ra and ri were comparable in this temperature range. Assumptions were made about the effect of the chemical composition of the surface on the rate of oxygen adsorption. It was found that the oxygen exchange coefficient (k) of Sr2Fe1.5Mo0.5O6−δ is comparable to that of La0.6Sr0.4MnO3±δ oxide. High values of the oxygen diffusion coefficient were found for Sr2Fe1.5Mo0.5O6−δ. The values were comparable to those of the double cobaltite praseodymium-barium and exceed by more than an order those of lanthanum‐strontium manganite. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Russian Foundation for Basic Research, RFBR: 00161Government Council on Grants, Russian FederationThe study was partly financially supported by the Russian Foundation for Basic Research (17-08-00161) and the Russian Federation Government, agreement 02.A03.21.0006 (no. 211)
Transition frequency shifts with fine structure constant variation for Fe II: Breit and core-valence correlation correction
Transition frequencies of Fe II ion are known to be very sensitive to
variation of the fine structure constant \alpha. The resonance absorption lines
of Fe II from objects at cosmological distances are used in a search for the
possible variation of \alpha in cause of cosmic time. In this paper we
calculated the dependence of the transition frequencies on \alpha^2 (q-factors)
for Fe II ion. We found corrections to these coefficients from valence-valence
and core-valence correlations and from the Breit interaction. Both the
core-valence correlation and Breit corrections to the q-factors appeared to be
larger than had been anticipated previously. Nevertheless our calculation
confirms that the Fe II absorption lines seen in quasar spectra have large
q-factors of both signs and thus the ion Fe II alone can be used in the search
for the \alpha-variation at different cosmological epochs.Comment: 7 pages, submitted to Phys. Rev.
Hopping Conduction in Uniaxially Stressed Si:B near the Insulator-Metal Transition
Using uniaxial stress to tune the critical density near that of the sample,
we have studied in detail the low-temperature conductivity of p-type Si:B in
the insulating phase very near the metal-insulator transition. For all values
of temperature and stress, the conductivity collapses onto a single universal
scaling curve. For large values of the argument, the scaling function is well
fit by the exponentially activated form associated with variable range hopping
when electron-electron interactions cause a soft Coulomb gap in the density of
states at the Fermi energy. The temperature dependence of the prefactor,
corresponding to the T-dependence of the critical curve, has been determined
reliably for this system, and is proportional to the square-root of T. We show
explicitly that nevlecting the prefactor leads to substantial errors in the
determination of the scaling parameters and the critical exponents derived from
them. The conductivity is not consistent with Mott variable-range hopping in
the critical region nor does it obey this form for any range of the parameters.
Instead, for smaller argument of the scaling function, the conductivity of Si:B
is well fit by an exponential form with exponent 0.31 related to the critical
exponents of the system at the metal- insulator transition.Comment: 13 pages, 6 figure
History-dependent relaxation and the energy scale of correlation in the Electron-Glass
We present an experimental study of the energy-relaxation in
Anderson-insulating indium-oxide films excited far from equilibrium. In
particular, we focus on the effects of history on the relaxation of the excess
conductance dG. The natural relaxation law of dG is logarithmic, namely
dG=-log(t). This may be observed over more than five decades following, for
example, cool-quenching the sample from high temperatures. On the other hand,
when the system is excited from a state S_{o} in which it has not fully reached
equilibrium to a state S_{n}, the ensuing relaxation law is logarithmic only
over time t shorter than the time t_{w} it spent in S_{o}. For times t>t_{w}
dG(t) show systematic deviation from the logarithmic dependence. It was
previously shown that when the energy imparted to the system in the excitation
process is small, this leads to dG=P(t/t_{w}) (simple-aging). Here we test the
conjecture that `simple-aging' is related to a symmetry in the relaxation
dynamics in S_{o} and S_{n}. This is done by using a new experimental procedure
that is more sensitive to deviations in the relaxation dynamics. It is shown
that simple-aging may still be obeyed (albeit with a modified P(t/t_{w})) even
when the symmetry of relaxation in S_{o} and S_{n} is perturbed by a certain
degree. The implications of these findings to the question of aging, and the
energy scale associated with correlations are discussed
The metal-insulator transition in Si:X: Anomalous response to a magnetic field
The zero-temperature magnetoconductivity of just-metallic Si:P scales with
magnetic field, H, and dopant concentration, n, lying on a single universal
curve. We note that Si:P, Si:B, and Si:As all have unusually large magnetic
field crossover exponents near 2, and suggest that this anomalously weak
response to a magnetic field is a common feature of uncompensated doped
semiconductors.Comment: 4 pages (including figures
Electric dipole moments of Hg, Xe, Rn, Ra, Pu, and TlF induced by the nuclear Schiff moment and limits on time-reversal violating interactions
We have calculated the atomic electric dipole moments (EDMs) induced in
^{199}Hg, ^{129}Xe, ^{223}Rn, ^{225}Ra, and ^{239}Pu by their respective
nuclear Schiff moments S. The results are (in units 10^{-17}S(e {fm}^{3})^{-1}e
cm): d(^{199}Hg)=-2.8, d(^{129}Xe)=0.38, d(^{223}Rn)=3.3, d(^{225}Ra)=-8.5,
d(^{239}Pu)=-11. We have also calculated corrections to the parity- and
time-invariance-violating (P,T-odd) spin-axis interaction constant in TlF.
These results are important for the interpretation of atomic and molecular
experiments on EDMs in terms of fundamental P,T-odd parameters.Comment: 16 page
- …