45,359 research outputs found

    A consistent model for leptogenesis, dark matter and the IceCube signal

    Get PDF
    We discuss a left-right symmetric extension of the Standard Model in which the three additional right-handed neutrinos play a central role in explaining the baryon asymmetry of the Universe, the dark matter abundance and the ultra energetic signal detected by the IceCube experiment. The energy spectrum and neutrino flux measured by IceCube are ascribed to the decays of the lightest right-handed neutrino N1N_1, thus fixing its mass and lifetime, while the production of N1N_1 in the primordial thermal bath occurs via a freeze-in mechanism driven by the additional SU(2)RSU(2)_R interactions. The constraints imposed by IceCube and the dark matter abundance allow nonetheless the heavier right-handed neutrinos to realize a standard type-I seesaw leptogenesis, with the BLB-L asymmetry dominantly produced by the next-to-lightest neutrino N2N_2. Further consequences and predictions of the model are that: the N1N_1 production implies a specific power-law relation between the reheating temperature of the Universe and the vacuum expectation value of the SU(2)RSU(2)_R triplet; leptogenesis imposes a lower bound on the reheating temperature of the Universe at 7\times10^9\,\mbox{GeV}. Additionally, the model requires a vanishing absolute neutrino mass scale m10m_1\simeq0.Comment: 19 pages, 4 figures. Constraints from cosmic-ray antiprotons and gamma rays added, with hadrophobic assignment of the matter multiplets to satisfy bounds. References added. Matches version published in JHE

    On stoichiometry and intermixing at the spinel/perovskite interface in CoFe2O4/BaTiO3 thin films

    Get PDF
    The performance of complex oxide heterostructures depends primarily on the interfacial coupling of the two component structures. This interface character inherently varies with the synthesis method and conditions used since even small composition variations can alter the electronic, ferroelectric, or magnetic functional properties of the system. The focus of this article is placed on the interface character of a pulsed laser deposited CoFe2O4/BaTiO3 thin film. Using a range of state-of-the-art transmission electron microscopy methodologies, the roles of substrate morphology, interface stoichiometry, and cation intermixing are determined on the atomic level. The results reveal a surprisingly uneven BaTiO3 substrate surface formed after the film deposition and Fe atom incorporation in the top few monolayers inside the unit cell of the BaTiO3 crystal. Towards the CoFe2O4 side, a disordered region extending several nanometers from the interface was revealed and both Ba and Ti from the substrate were found to diffuse into the spinel layer. The analysis also shows that within this somehow incompatible composite interface, a different phase is formed corresponding to the compound Ba2Fe3Ti5O15, which belongs to the ilmenite crystal structure of FeTiO3 type. The results suggest a chemical activity between these two oxides, which could lead to the synthesis of complex engineered interfaces

    Prospects for intermediate mass black hole binary searches with advanced gravitational-wave detectors

    Get PDF
    We estimated the sensitivity of the upcoming advanced, ground-based gravitational-wave observatories (the upgraded LIGO and Virgo and the KAGRA interferometers) to coalescing intermediate mass black hole binaries (IMBHB). We added waveforms modeling the gravitational radiation emitted by IMBHBs to detectors' simulated data and searched for the injected signals with the coherent WaveBurst algorithm. The tested binary's parameter space covers non-spinning IMBHBs with source-frame total masses between 50 and 1050 M\text{M}_{\odot} and mass ratios between 1/61/6 and 1\,. We found that advanced detectors could be sensitive to these systems up to a range of a few Gpc. A theoretical model was adopted to estimate the expected observation rates, yielding up to a few tens of events per year. Thus, our results indicate that advanced detectors will have a reasonable chance to collect the first direct evidence for intermediate mass black holes and open a new, intriguing channel for probing the Universe over cosmological scales.Comment: 9 pages, 4 figures, corrected the name of one author (previously misspelled

    Subsquares Approach - Simple Scheme for Solving Overdetermined Interval Linear Systems

    Full text link
    In this work we present a new simple but efficient scheme - Subsquares approach - for development of algorithms for enclosing the solution set of overdetermined interval linear systems. We are going to show two algorithms based on this scheme and discuss their features. We start with a simple algorithm as a motivation, then we continue with a sequential algorithm. Both algorithms can be easily parallelized. The features of both algorithms will be discussed and numerically tested.Comment: submitted to PPAM 201

    Low-noise design issues for analog front-end electronics in 130 nm and 90 nm CMOS technologies

    Get PDF
    Deep sub-micron CMOS technologies provide wellestablished solutions to the implementation of low-noise front-end electronics in various detector applications. The IC designers’ effort is presently shifting to 130 nm CMOS technologies, or even to the next technology node, to implement readout integrated circuits for silicon strip and pixel detectors, in view of future HEP applications. In this work the results of noise measurements carried out on CMOS devices in 130 nm and 90 nm commercial processes are presented. The behavior of the 1/f and white noise terms is studied as a function of the device polarity and of the gate length and width. The study is focused on low current density applications where devices are biased in weak or moderate inversion. Data obtained from the measurements provide a powerful tool to establish design criteria in nanoscale CMOS processes for detector front-ends in LHC upgrades

    Towards Verifying Nonlinear Integer Arithmetic

    Full text link
    We eliminate a key roadblock to efficient verification of nonlinear integer arithmetic using CDCL SAT solvers, by showing how to construct short resolution proofs for many properties of the most widely used multiplier circuits. Such short proofs were conjectured not to exist. More precisely, we give n^{O(1)} size regular resolution proofs for arbitrary degree 2 identities on array, diagonal, and Booth multipliers and quasipolynomial- n^{O(\log n)} size proofs for these identities on Wallace tree multipliers.Comment: Expanded and simplified with improved result

    MAPS in 130 nm triple well CMOS technology for HEP applications

    Get PDF
    Deep N-well CMOS monolithic active pixel sensors (DNWMAPS) represent an alternative approach to signal processing in pixellated detectors for high energy physics experiments. Based on different resolution constraints, two prototype MAPS, suitable for applications requiring different detector pitch, have been developed and fabricated in 130 nm triple well CMOS technology. This work presents experimental results from the characterization of some test structures together with TCAD and Monte Carlo simulations intended to study the device properties in terms of charge diffusion and charge sharing among pixels
    corecore