39 research outputs found

    PAX3 Expression in Normal Skin Melanocytes and Melanocytic Lesions (Naevi and Melanomas)

    Get PDF
    Background Cutaneous Malignant Melanoma is an aggressive form of skin cancer, arising in cutaneous melanocytes. The transcription factor PAX3 regulates melanocyte specification from neural crest cells during development but expression in differentiated melanocytes is uncertain. By contrast it is frequently found in melanomas and naevi and is a marker for melanoma staging and detection. In this study we analysed the expression of PAX3 across the spectrum of melanocytic cells, from normal melanocytes to cells of benign and malignant lesions to better assess its function in these various tissues. Pax3 and PAX3 (italicized) refer to the mouse and human gene, respectively; whereas Pax3 and PAX3 (non-italicized) refer to the corresponding mouse and human protein. Methodology and Principal Findings PAX3 expression was analysed by immunohistochemistry and qRT-PCR. Immunofluorescence was used for co-expression with differentiation, migration and survival markers. As expected PAX3 expression was observed in naevi and melanoma cells. It was also found in melanocytes of normal skin where it co-expressed with melanocyte markers, MITF and MLANA. Co-expression with its downstream target, antiapoptotic factor BCL2L1 confirms PAX3 as a cell survival regulator. PAX3 was also co-expressed with melanoma cell migration marker MCAM in dermal naevi and melanoma cell nests, but this downstream target of PAX3 was not present in normal epidermal melanocytes, suggesting differential roles for PAX3 in normal epidermal melanocytes and melanoma cells. Most interestingly, a proportion of PAX3-positive epidermal melanocytes in normal skin show HES1 and Ki67 co-expression, indicating their less differentiated proliferative phenotype. Conclusions and Significance Our results suggest that a previously identified role for PAX3, that of regulator of an undifferentiated plastic state, may operate in melanocytes of normal skin. This role, possibly required for cellular response to environmental stimuli, may contribute to formation and development of melanocytic lesions in which PAX3 expression is prominent

    Disease-Toxicant Interactions in Manganese Exposed Huntington Disease Mice: Early Changes in Striatal Neuron Morphology and Dopamine Metabolism

    Get PDF
    YAC128 Huntington's disease (HD) transgenic mice accumulate less manganese (Mn) in the striatum relative to wild-type (WT) littermates. We hypothesized that Mn and mutant Huntingtin (HTT) would exhibit gene-environment interactions at the level of neurochemistry and neuronal morphology. Twelve-week-old WT and YAC128 mice were exposed to MnCl2-4H2O (50 mg/kg) on days 0, 3 and 6. Striatal medium spiny neuron (MSN) morphology, as well as levels of dopamine (DA) and its metabolites (which are known to be sensitive to Mn-exposure), were analyzed at 13 weeks (7 days from initial exposure) and 16 weeks (28 days from initial exposure). No genotype-dependent differences in MSN morphology were apparent at 13 weeks. But at 16 weeks, a genotype effect was observed in YAC128 mice, manifested by an absence of the wild-type age-dependent increase in dendritic length and branching complexity. In addition, genotype-exposure interaction effects were observed for dendritic complexity measures as a function of distance from the soma, where only YAC128 mice were sensitive to Mn exposure. Furthermore, striatal DA levels were unaltered at 13 weeks by genotype or Mn exposure, but at 16 weeks, both Mn exposure and the HD genotype were associated with quantitatively similar reductions in DA and its metabolites. Interestingly, Mn exposure of YAC128 mice did not further decrease DA or its metabolites versus YAC128 vehicle exposed or Mn exposed WT mice. Taken together, these results demonstrate Mn-HD disease-toxicant interactions at the onset of striatal dendritic neuropathology in YAC128 mice. Our results identify the earliest pathological change in striatum of YAC128 mice as being between 13 to 16 weeks. Finally, we show that mutant HTT suppresses some Mn-dependent changes, such as decreased DA levels, while it exacerbates others, such as dendritic pathology

    Die Kristallstruktur von CaPt(OH)6

    No full text

    Zur Struktur der Verbindungen vom Sr2PbO4-Typ

    No full text

    Die Kristallstruktur von CO6Te5O16

    No full text

    Die Kristallstruktur von Li2Pt(OH)6

    No full text
    corecore