824 research outputs found

    Kinetics of water flow through polymer gel

    Full text link
    The water flow through the poly(acrylamide) gel under a constant water pressure is measured by newly designed apparatus. The time evolution of the water flow in the gel, is calculated based on the collective diffusion model of the polymer network coupled with the friction between the polymer network and the water. The friction coefficient are determined from the equilibrium velocity of water flow. The Young modulus and the Poisson's ratio of the rod shape gels are measured by the uni-axial elongation experiments, which determine the longitudinal modulus independently from the water flow experiments. With the values of the longitudinal modulus and of the friction determined by the experiments, the calculated results are compared with the time evolution of the flow experiments. We find that the time evolution of the water flow is well described by a single characteristic relaxation time predicted by the collective diffusion model coupled with the water friction.Comment: 7 pages, 5 figures, 27 references, Eqs adde

    Neuro-flow Dynamics and the Learning Processes

    Full text link
    A new description of the neural activity is introduced by the neuro-flow dynamics and the extended Hebb rule. The remarkable characteristics of the neuro-flow dynamics, such as the primacy and the recency effect during awakeness or sleep, are pointed out.Comment: 8 pages ,10 Postscript figures, LaTeX file, to appear in Chaos, Solitons and Fractal

    Non-thermal ablation of expanded polytetrafluoroethylene with an intense femtosecond-pulse laser

    Get PDF
    Ablation of expanded polytetrafluoroethylene without disruption of the fine porous structure is demonstrated using an intense femtosecond-pulse laser. As a result of laser-matter interactions near ablation threshold fluence, high-energy ions are emitted, which cannot be produced by thermal dissociation of the molecules. The ion energy is produced by Coulomb explosion of the elements of (-CF_{2}-CF_{2-})n and the energy spectra of the ions show contributions from the Coulomb explosions of the ions rather than those of thermal expansion to generate high-energy ions. The dependence of ion energy on the laser fluence of a 180-fs pulse, compared with that of a 400-ps pulse, also suggests that the high-energy ions are accelerated by Coulomb explosio

    Heteroclinic Chaos, Chaotic Itinerancy and Neutral Attractors in Symmetrical Replicator Equations with Mutations

    Full text link
    A replicator equation with mutation processes is numerically studied. Without any mutations, two characteristics of the replicator dynamics are known: an exponential divergence of the dominance period, and hierarchical orderings of the attractors. A mutation introduces some new aspects: the emergence of structurally stable attractors, and chaotic itinerant behavior. In addition, it is reported that a neutral attractor can exist in the mutataion rate -> +0 region.Comment: 4 pages, 9 figure

    Anatomic characterisation of the parietal branches arising from the internal iliac artery in the foetal pig (Sus scrofa domestica)

    Get PDF
    Background: It is critical for surgeons to have a full understanding of the complex courses and ramifications of the human internal iliac artery and its parietal branches. Although numerous anatomical studies have been performed, not all variations at this site are currently understood. Therefore, we characterised these blood vessels in foetal pigs to provide additional insight from a comparative anatomical perspective. Materials and methods: Eighteen half-pelvis specimens from foetal pigs were dissected and examined on macroscopic scale. Results: Among our findings, we identified the internal iliac artery as a descending branch of the abdominal aorta. A very thick umbilical artery arose from the internal iliac artery. The superior gluteal, inferior gluteal, and internal pudendal arteries formed the common arterial trunk. Although the superior gluteal artery emerged from the common trunk from inside the pelvis, the inferior gluteal and internal pudendal arteries bifurcated at deep layer within the gluteus muscles after leaving pelvic cavity. We were unable to detect an typical obturator artery emerging from the internal iliac artery. A branch supplying the hip adductors was identified as arising from the inferior epigastric artery which itself was derived from the distal end of the external iliac artery. Conclusions: We identified the anatomic characteristics of the internal iliac artery and its parietal branches in the foetal pig. Our findings provide new insight into the comparative anatomy of the internal iliac artery and will promote understanding of related morphogenetic processes

    Mechanism of femtosecond laser nano-ablation for metals

    Get PDF
    Metals have three ablation threshold fluences (high,middle and low-threshold fluence, here called) forfemtosecond laser pulses. In order to investigatethe physics of metal ablation under an intenseoptical field, the ions emitted from a laserirradiatedcopper surface were studied by time-offlightenergy spectroscopy. The low laser fluenceat which ions are emitted, Fth,L is 0.028 J/cm2, andtwo higher emission thresholds were identified atfluences of Fth,M =0.195 J/cm2 and Fth,H =0.470J/cm2. The relation between the number of emittedions per pulse Ni and laser fluence F was in goodagreement with Ni ∝F4 for Fth,L - Fth,M, Ni ∝F3 forFth,M - Fth,H, and Ni ∝F2 for ≥ Fth,H. Thedependence of ion production on laser energyfluence is explained well by multiphotonabsorption and optical field ionization.For fluence levels near the middle to high ablationthreshold, the formation of grating structures onmetal surfaces has been observed. The interspacesof grating structures were shorter than the laserwavelength, and the interspaces depend on fluencefor Mo and W with a 160 fs laser pulse. Thisphenomenon is well explained by the parametricdecay model proposed by Sakabe et al

    Species Abundance Patterns in Complex Evolutionary Dynamics

    Full text link
    An analytic theory of species abundance patterns (SAPs) in biological networks is presented. The theory is based on multispecies replicator dynamics equivalent to the Lotka-Volterra equation, with diverse interspecies interactions. Various SAPs observed in nature are derived from a single parameter. The abundance distribution is formed like a widely observed left-skewed lognormal distribution. As the model has a general form, the result can be applied to similar patterns in other complex biological networks, e.g. gene expression.Comment: 4 pages, 3 figures. Physical Review Letters, in pres
    corecore