554 research outputs found

    Isolation and primary structure of human PHI (peptide HI)

    Get PDF
    AbstractThe isolation of the human form of PHI (peptide HI) is described. The peptide was purified from human colonic extracts by using a chemical method for the detection of its C-terminal amidated structure. Human PHI consists of 27 amino acid residues and the complete amino acid sequence is: His-Ala-Asp-Gly-Val-Phe-Thr-Ser-Asp-Phe-Ser-Lys-Leu-Leu-Gly-Gln-Leu-Ser-Ala-Lys-Lys-Tyr-Leu-Glu-Ser-Leu-Met-NH2. The differences between the structures of porcine and human PHI are at position 12 (Arg/Lys replacement) and at position 27 (Ile/Met).Human PHIPorcine PHIBovine PHIBrain peptideGut peptideC-terminal amideVIP/PHI precurso

    Immunological characterization of chromogranins A and B and secretogranin II in the bovine pancreatic islet

    Get PDF
    Antisera against chromogranin A and B and secretogranin II were used for analysing the bovine pancreas by immunoblotting and immunohistochemistry. All three antigens were found in extracts of fetal pancreas by one dimensional immunoblotting. A comparison with the soluble proteins of chromaffin granules revealed that in adrenal medulla and in pancreas antigens which migrated identically in electrophoresis were present. In immunohistochemistry, chromogranin A was found in all pancreatic endocrine cell types with the exception of most pancreatic polypeptide-(PP-) producing cells. For chromogranin B, only a faint immunostaining was obtained. For secretorgranin II, A-and B-cells were faintly positive, whereas the majority of PP-cells exhibited a strong immunostaining for this antigen. These results establish that chromogranins A and B and secretogranin II are present in the endocrine pancreas, but that they exhibit a distinct cellular localization

    Human Mas-related G protein-coupled receptors-X1 induce chemokine receptor 2 expression in rat dorsal root ganglia neurons and release of chemokine ligand 2 from the human LAD-2 mast cell line

    Get PDF
    Primate-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are highly enriched in dorsal root ganglia (DRG) neurons and induce acute pain. Herein, we analyzed effects of MRGPR-X1 on serum response factors (SRF) or nuclear factors of activated T cells (NFAT), which control expression of various markers of chronic pain. Using HEK293, DRG neuron-derived F11 cells and cultured rat DRG neurons recombinantly expressing human MRGPR-X1, we found activation of a SRF reporter gene construct and induction of the early growth response protein-1 via extracellular signal-regulated kinases-1/2 known to play a significant role in the development of inflammatory pain. Furthermore, we observed MRGPR-X1-induced up-regulation of the chemokine receptor 2 (CCR2) via NFAT, which is considered as a key event in the onset of neuropathic pain and, so far, has not yet been described for any endogenous neuropeptide. Up-regulation of CCR2 is often associated with increased release of its endogenous agonist chemokine ligand 2 (CCL2). We also found MRGPR-X1-promoted release of CCL2 in a human connective tissue mast cell line endogenously expressing MRGPR-X1. Thus, we provide first evidence to suggest that MRGPR-X1 induce expression of chronic pain markers in DRG neurons and propose a so far unidentified signaling circuit that enhances chemokine signaling by acting on two distinct yet functionally co-operating cell types. Given the important role of chemokine signaling in pain chronification, we propose that interruption of this signaling circuit might be a promising new strategy to alleviate chemokine-promoted pain

    An invasive adenocarcinoma of the accessory parotid gland: a rare example developing from a low-grade cribriform cystadenocarcinoma?

    Get PDF
    Low-grade cribriform cystadenocarcinoma (LGCCA) is a rare tumor of the salivary gland that exhibits clinically indolent behavior. In this paper, we present a case of invasive adenocarcinoma of the accessory parotid gland in a young male that exhibited histology suggestive of an association of LGCCA. A 27-year-old man presented with a subcutaneous tumor in his left cheek. The tumor was separated from the parotid gland and located on the masseter muscle. The tumor was resected, and the postoperative histological diagnosis was adenocarcinoma, not otherwise specified (ANOS). The tumor exhibited papillary-cystic and cribriform proliferation of the duct epithelium and obvious stromal infiltration. Some tumor nests were rimmed by myoepithelium positive for smooth muscle actin, p63, and cytokeratin 14, indicating the presence of intraductal components of the tumor. Tumor cells exhibited mild nuclear atypia, and some of them presented an apocrine-like appearance and had cytoplasmic PAS-positive/diastase-resistant granules and hemosiderin. Other cells had foamy cytoplasm with microvacuoles. Immunohistochemistry revealed that the almost all of the tumor cells were strongly positive for S-100. These histological findings suggest the possibility that ANOS might arise secondarily from LGCCA. This is an interesting case regarding the association between ANOS and LGCCA in oncogenesis

    Peptide YY ablation in mice leads to the development of hyperinsulinaemia and obesity

    Get PDF
    Aims/hypothesis. Obese people exhibit reduced circulating peptide YY (PYY) levels, but it is unclear whether this is a consequence or cause of obesity. We therefore investigated the effect of Pyy ablation on energy homeostasis. Methods. Body composition, i.p. glucose tolerance, food intake and hypothalamic neuropeptide expression were determined in Pyy knock-out and wild-type mice on a normal or high-fat diet. Results. Pyy knock-out significantly increased bodyweight and increased fat mass by 50% in aged females on a normal diet. Male chow-fed Pyy βˆ’/βˆ’ mice were resistant to obesity but became significantly fatter and glucose-intolerant compared with wild-types when fed a high-fat diet. Pyy knock-out animals exhibited significantly elevated fasting or glucose-stimulated serum insulin concentrations vs wild-types, with no increase in basal or fasting-induced food intake. Pyy knock-out decreased or had no effect on neuropeptide Y expression in the arcuate nucleus of the hypothalamus, and significantly increased proopiomelanocortin expression in this region. Male but not female knock-outs exhibited significantly increased growth hormone-releasing hormone expression in the ventromedial hypothalamus and significantly elevated serum IGF-I and testosterone levels. This sex difference in activation of the hypothalamo–pituitary somatotrophic axis by Pyy ablation may contribute to the resistance of chow-fed male knock-outs to late-onset obesity. Conclusions/interpretation. PYY signalling is important in the regulation of energy balance and glucose homeostasis, possibly via regulation of insulin release. Therefore reduced PYY levels may predispose to the development of obesity, particularly with ageing or under conditions of high-fat feeding

    Effects of Thioglycolic Acid on Parthenogenetic Activation of Xenopus Oocytes

    Get PDF
    BACKGROUND: Existing in Permanent-wave solutions (PWS), thioglycolic acid (TGA) is widely used in hairdressing industry for its contribution to hair styling. However, the toxicity of TGA, especially its reproductive toxicity, gradually calls the attention of more and more researchers. METHOD: In this work, xenopus oocytes were pretreated with different concentration of TGA, and then activated by calcium ionophore A23187. During culture, the oocytes activation rates were taken note at different time after adding calcium ionophore A23187. At the end of the culture period, the nuclear status was detected under confocal microscope. In addition, some other samples were collected for Western-Blotting analysis. RESULT: TGA significantly inhibited the oocytes activation rate and pronuclear formation. It may be resulted from the inhibition of the degradation of p-ERK1, Mos and CyclinB2. CONCLUSION: TGA inhibits in vitro parthenogenetic activation of xenopus oocytes with inhibited the degradation of proteins involved in mitogenic-activated protein kinase (MAPK) and maturation-promoting factor (MPF) pathways

    Apelin Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells

    Get PDF
    Vascular calcification, which results from a process osteoblastic differentiation of vascular smooth muscle cells (VSMCs), is a major risk factor for cardiovascular morbidity and mortality. Apelin is a recently discovered peptide that is the endogenous ligand for the orphan G-protein-coupled receptor, APJ. Several studies have identified the protective effects of apelin on the cardiovascular system. However, the effects and mechanisms of apelin on the osteoblastic differentiation of VSMCs have not been elucidated. Using a culture of calcifying vascular smooth muscle cells (CVMSCs) as a model for the study of vascular calcification, the relationship between apelin and the osteoblastic differentiation of VSMCs and the signal pathway involved were investigated. Alkaline phosphatase (ALP) activity and osteocalcin secretion were examined in CVSMCs. The involved signal pathway was studied using the extracellular signal-regulated kinase (ERK) inhibitor, PD98059, the phosphatidylinositol 3-kinase (PI3-K) inhibitor, LY294002, and APJ siRNA. The results showed that apelin inhibited ALP activity, osteocalcin secretion, and the formation of mineralized nodules. APJ protein was detected in CVSMCs, and apelin activated ERK and AKT (a downstream effector of PI3-K). Suppression of APJ with siRNA abolished the apelin-induced activation of ERK and Akt. Furthermore, inhibition of APJ expression, and the activation of ERK or PI3-K, reversed the effects of apelin on ALP activity. These results showed that apelin inhibited the osteoblastic differentiation of CVSMCs through the APJ/ERK and APJ/PI3-K/AKT signaling pathway. Apelin appears to play a protective role against arterial calcification
    • …
    corecore