65 research outputs found
The first choristoderan record from the Upper Cretaceous of Asia, Tamagawa Formation, Kuji Group, Japan
Choristoderes are freshwater diapsid reptiles that are distributed through Laurasia in Jurassic–Miocene deposits. The group shows great diversity in the Early Cretaceous of Asia, with all recognized morphotypes recorded from that region. However, there is then a substantial gap in the Asian record until choristoderes are reported from the Paleocene of Kazakhstan. This gap has raised questions as to whether the group became extinct in Asia during the Late Cretaceous, with subsequent reinvasion from either North America or Europe. Here we report the discovery of vertebrae attributable to Choristodera indet. from the lower Upper Cretaceous (Turonian) of the Tamagawa Formation, Kuji City, Iwate Prefecture, Japan. This is the first record of Choristodera from the Upper Cretaceous of Asia, and may imply that the group persisted in this region from the Jurassic to the Paleocene. The challenge for the future will be to recover a more complete record of Choristodera in the Upper Cretaceous of Asia
Examining exotic structure of proton-rich nucleus Al
The longitudinal momentum distribution (P_{//}) of fragments after one-proton
removal from ^{23} Al and reaction cross sections (\sigma_R) for
^{23,24} Al on carbon target at 74A MeV have been measured. The ^{23,24} Al
ions were produced through projectile fragmentation of 135 A MeV ^{28} Si
primary beam using RIPS fragment separator at RIKEN. P_{//} is measured by a
direct time-of-flight (TOF) technique, while \sigma_R is determined using a
transmission method. An enhancement in \sigma_R is observed for ^{23} Al
compared with ^{24} Al. The P_{//} for ^{22} Mg fragments from ^{23} Al breakup
has been obtained for the first time. FWHM of the distributions has been
determined to be 232 \pm 28 MeV/c. The experimental data are discussed by using
Few-Body Glauber model. Analysis of P_{//} demonstrates a dominant d-wave
configuration for the valence proton in ground state of ^{23} Al, indicating
that ^{23} Al is not a proton halo nucleus
Analysis of response mechanism of a proton-pumping gate FET hydrogen gas sensor in air
Two different types of hydrogen response signals (DC and AC) of a proton-pumping gate FET with triple layer gate structure (Pd/proton conducting polymer/Pt) were obtained. The proton-pumping gate FET showed good selectivity against other gases (CH4, C2H6, NH3, and O2). For practical use, the hydrogen response characteristics of the proton-pumping gate FET were investigated in air (a gaseous mixture of oxygen and nitrogen). The proton-pumping gate FET showed different hydrogen response characteristics in nitrogen as well as in air, despite the lack of oxygen interference independently. To clarify the response mechanism of the proton-pumping gate FET, a hydrogen response measurement was performed, using a gas flow system and electrochemical impedance spectroscopy. Consequently, the difference in response between nitrogen and air was found to be due to the hydrogen dissociation reaction and the interference with the proton transfer caused by the adsorbed oxygen on the upper Pd gate electrode</p
Alteration of proliferation and apoptotic markers in normal and premalignant tissue associated with prostate cancer
BACKGROUND: Molecular markers identifying alterations in proliferation and apoptotic pathways could be particularly important in characterizing high-risk normal or pre-neoplastic tissue. We evaluated the following markers: Ki67, Minichromosome Maintenance Protein-2 (Mcm-2), activated caspase-3 (a-casp3) and Bcl-2 to determine if they showed differential expression across progressive degrees of intraepithelial neoplasia and cancer in the prostate. To identify field effects, we also evaluated whether high-risk expression patterns in normal tissue were more common in prostates containing cancer compared to those without cancer (supernormal), and in histologically normal glands adjacent to a cancer focus as opposed to equivalent glands that were more distant. METHODS: The aforementioned markers were studied in 13 radical prostatectomy (RP) and 6 cystoprostatectomy (CP) specimens. Tissue compartments representing normal, low grade prostatic intraepithelial neoplasia (LGPIN), high grade prostatic intraepithelial neoplasia (HGPIN), as well as different grades of cancer were mapped on H&E slides and adjacent sections were analyzed using immunohistochemistry. Normal glands within 1 mm distance of a tumor focus and glands beyond 5 mm were considered "near" and "far", respectively. Randomly selected nuclei and 40 × fields were scored by a single observer; basal and luminal epithelial layers were scored separately. RESULTS: Both Ki-67 and Mcm-2 showed an upward trend from normal tissue through HGPIN and cancer with a shift in proliferation from basal to luminal compartment. Activated caspase-3 showed a significant decrease in HGPIN and cancer compartments. Supernormal glands had significantly lower proliferation indices and higher a-casp3 expression compared to normal glands. "Near" normal glands had higher Mcm-2 indices compared to "far" glands; however, they also had higher a-casp3 expression. Bcl-2, which varied minimally in normal tissue, did not show any trend across compartments or evidence for field effects. CONCLUSION: These results demonstrate that proliferation and apoptosis are altered not only in preneoplastic lesions but also in apparently normal looking epithelium associated with cancer. Luminal cell expression of Mcm-2 appears to be particularly promising as a marker of high-risk normal epithelium. The role of apoptotic markers such as activated caspase-3 is more complex, and might depend on the proliferation status of the tissue in question
Occlusion of calcium in the ADP-sensitive phosphoenzyme of the adenosine triphosphatase of sarcoplasmic reticulum
In order to characterize the form of the phosphorylated Ca2+-ATPase of sarcoplasmic reticulum which occludes the calcium bound in the enzyme (Takisawa, H., and Makinose, M. (1981) Nature (Lond.) 290, 271-273), a kinetic method was developed allowing quantitation of the amount of ADP-sensitive and ADP-insensitive phosphoenzyme. The relationships between occluded Ca2+ in the enzyme and the two forms of phosphoenzyme were studied at various concentrations of CaCl2 and MgCl2. The amount of tightly bound Ca2+ in the phosphoenzyme increases concordantly with the increase in the amount of ADP-sensitive phosphoenzyme, suggesting that occlusion of Ca2+ occurs in the ADP-sensitive phosphoenzyme. These results suggest that 1 mol of ADP-sensitive phosphoenzyme occludes 2 mol of Ca2+. Ca2+ is released from the enzyme under conditions which favor the formation of the ADP-insensitive phosphoenzyme (e.g. 5 mM MgCl2 and 50 microM CaCl2). Ca2+ release correlates approximately with the formation of the ADP-insensitive phosphoenzyme. The simulated time course of Ca2+ release, based on the Ca2+-binding properties of the two forms of phosphoenzyme, shows a good fit with the Ca2+ release curves observed, indicating that the ADP-insensitive phosphoenzyme binds no Ca2+ under these conditions
Occluded bound calcium on the phosphorylated sarcoplasmic transport ATPase
The Ca2+ + Mg2+-activated ATPase of the sarcoplasmic reticulum is responsible for the active Ca2+ transport of this membrane system, the key feature of which is the formation of an energy-rich phosphorylated transport enzyme (EP) and its conversion. To understand the Ca2+-transport mechanism, it is essential to clarify the behaviour of this intermediate in relation to such ligands as ATP, ADP, Mg2+ and, particularly, Ca2+. Recent kinetic studies on the phosphate turnover of this system suggested a relatively slow rate of Ca2+ dissociation from the phosphorylated enzyme, which possibly indicated Ca2+ binding in some occluded form with the intermediate. Here we report direct measurements of the binding and release of Ca2+ during phosphorylation of the sarcoplasmic transport enzyme. The results indicate an occlusion of the Ca2+ binding, accompanying an initial configurational change of the enzyme induced by the energy-rich phosphoryl transfer
[16] Occluded Ca2+
This chapter focuses on the occluded Ca2+. Ion-transport enzymes undergo a sequence of reaction steps in which the respective ions and phosphates interact with the enzyme mutually. One enzyme state in the main reaction cycle has been defined as occluded with respect to the ion to be translocated, i.e., the ions bound to the enzyme in this state are slowly exchanged with free ions in the medium. In order to measure the occluded ions bound to the enzyme, free ions are removed from assays as rapidly as possible. Several procedures have been applied to studies of the sodium-potassium and the calcium pump. The centrifuge column procedure is the most suitable method to identify occluded Ca2+-binding site and the corresponding phosphoprotein intermediates. The procedure is rather simple and the sensitivity is high. For extended use of this method, the following precautions should be observed. First, when membranous vesicular preparations are used, the membranes should be completely permeable to the transported solute so that only the bound and not the trapped solute are measured. Second, the rate at which the intermediate decomposes should be relatively slow so that no significant decomposition takes place during the column centrifugation
Regulation of Replication Licensing by Acetyltransferase Hbo1
The initiation of DNA replication is tightly regulated in eukaryotic cells to ensure that the genome is precisely duplicated once and only once per cell cycle. This is accomplished by controlling the assembly of a prereplicative complex (pre-RC) which involves the sequential binding to replication origins of the origin recognition complex (ORC), Cdc6/Cdc18, Cdt1, and the minichromosome maintenance complex (Mcm2-Mcm7, or Mcm2-7). Several mechanisms of pre-RC regulation are known, including ATP utilization, cyclin-dependent kinase levels, protein turnover, and Cdt1 binding by geminin. Histone acetylation may also affect the initiation of DNA replication, but at present neither the enzymes nor the steps involved are known. Here, we show that Hbo1, a member of the MYST histone acetyltransferase family, is a previously unrecognized positive regulatory factor for pre-RC assembly. When Hbo1 expression was inhibited in human cells, Mcm2-7 failed to associate with chromatin even though ORC and Cdc6 loading was normal. When Xenopus egg extracts were immunodepleted of Xenopus Hbo1 (XHbo1), chromatin binding of Mcm2-7 was lost, and DNA replication was abolished. The binding of Mcm2-7 to chromatin in XHbo1-depleted extracts could be restored by the addition of recombinant Cdt1
- …