3,871 research outputs found
Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device
The ability to coherently transport electron-spin states between different
sites of gate-defined semiconductor quantum dots is an essential ingredient for
a quantum-dot-based quantum computer. Previous shuttles using electrostatic
gating were too slow to move an electron within the spin dephasing time across
an array. Here we report a nanosecond-timescale spin transfer of individual
electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation
rates at a so-called `hot spot', we can upper bound the shuttle time to at most
150 ns. While actual shuttle times are likely shorter, 150 ns is already fast
enough to preserve spin coherence in e.g. silicon based quantum dots. This work
therefore realizes an important prerequisite for coherent spin transfer in
quantum dot arrays.Comment: 7 pages including 2 pages of supplementary materia
GABA(A) receptor phospho-dependent modulation is regulated by phospholipase C-related inactive protein type 1, a novel protein phosphatase 1 anchoring protein
GABA(A) receptors are critical in controlling neuronal activity. Here, we examined the role for phospholipase C-related inactive protein type 1 (PRIP-1), which binds and inactivates protein phosphatase 1alpha (PP1alpha) in facilitating GABA(A) receptor phospho-dependent regulation using PRIP-1(-/-) mice. In wild-type animals, robust phosphorylation and functional modulation of GABA(A) receptors containing beta3 subunits by cAMP-dependent protein kinase was evident, which was diminished in PRIP-1(-/-) mice. PRIP-1(-/-) mice exhibited enhanced PP1alpha activity compared with controls. Furthermore, PRIP-1 was able to interact directly with GABA(A) receptor beta subunits, and moreover, these proteins were found to be PP1alpha substrates. Finally, phosphorylation of PRIP-1 on threonine 94 facilitated the dissociation of PP1alpha-PRIP-1 complexes, providing a local mechanism for the activation of PP1alpha. Together, these results suggest an essential role for PRIP-1 in controlling GABA(A) receptor activity via regulating subunit phosphorylation and thereby the efficacy of neuronal inhibition mediated by these receptors
Tainted ores and the rise of tin bronzes in Eurasia, c. 6500 years ago
The earliest tin bronze artefacts in Eurasia are generally believed to have appeared in the Near East in the early third millennium BC. Here we present tin bronze artefacts that occur far from the Near East, and in a significantly earlier period. Excavations at PloÄŤnik, a VinÄŤa culture site in Serbia, recovered a piece of tin bronze foil from an occupation layer dated to the mid fifth millennium BC. The discovery prompted a reassessment of 14 insufficiently contextualised early tin bronze artefacts from the Balkans. They too were found to derive from the smelting of copper-tin ores. These tin bronzes extend the record of bronze making by c. 1500 years, and challenge the conventional narrative of Eurasian metallurgical development
Mean-Payoff Optimization in Continuous-Time Markov Chains with Parametric Alarms
Continuous-time Markov chains with alarms (ACTMCs) allow for alarm events
that can be non-exponentially distributed. Within parametric ACTMCs, the
parameters of alarm-event distributions are not given explicitly and can be
subject of parameter synthesis. An algorithm solving the -optimal
parameter synthesis problem for parametric ACTMCs with long-run average
optimization objectives is presented. Our approach is based on reduction of the
problem to finding long-run average optimal strategies in semi-Markov decision
processes (semi-MDPs) and sufficient discretization of parameter (i.e., action)
space. Since the set of actions in the discretized semi-MDP can be very large,
a straightforward approach based on explicit action-space construction fails to
solve even simple instances of the problem. The presented algorithm uses an
enhanced policy iteration on symbolic representations of the action space. The
soundness of the algorithm is established for parametric ACTMCs with
alarm-event distributions satisfying four mild assumptions that are shown to
hold for uniform, Dirac and Weibull distributions in particular, but are
satisfied for many other distributions as well. An experimental implementation
shows that the symbolic technique substantially improves the efficiency of the
synthesis algorithm and allows to solve instances of realistic size.Comment: This article is a full version of a paper accepted to the Conference
on Quantitative Evaluation of SysTems (QEST) 201
Occupational choice, number of entrepreneurs and output: theory and empirical evidence with Spanish data
This paper extends the (Lucas, Bell J Econ 9:508–523,1978) model of occupational choices by individuals with different skills, beyond the simple options of self-employment or wage-employment, by including a second choice for the self-employed. That is, an option to hire employees and so become self-employed with employees (SEWEs), or to be self-employed without employees (SEWNEs). We solve for the market equilibrium and examine the sensitivity of relative sizes of occupational groups, and of the level of productivity, to changes in the exogenous parameters. The results show that the positive (negative) association between number of SEWEs (SEWNEs) and productivity, observed in the Spanish data, can be explained, under certain conditions, as the result of cross-region and time differences in average skills. These findings point to the importance of distinguishing between SEWEs and SEWNEs in drawing valid conclusions concerning any link between entrepreneurship and economic development
Efficient Monte Carlo algorithm and high-precision results for percolation
We present a new Monte Carlo algorithm for studying site or bond percolation
on any lattice. The algorithm allows us to calculate quantities such as the
cluster size distribution or spanning probability over the entire range of site
or bond occupation probabilities from zero to one in a single run which takes
an amount of time scaling linearly with the number of sites on the lattice. We
use our algorithm to determine that the percolation transition occurs at
occupation probability 0.59274621(13) for site percolation on the square
lattice and to provide clear numerical confirmation of the conjectured
4/3-power stretched-exponential tails in the spanning probability functions.Comment: 8 pages, including 3 postscript figures, minor corrections in this
version, plus updated figures for the position of the percolation transitio
Nanotubular TiOxNy-Supported Ir Single Atoms and Clusters as Thin-Film Electrocatalysts for Oxygen Evolution in Acid Media
A versatile approach to the production of cluster- and single atom-based thin-film electrode composites is presented. The developed TiOxNy–Ir catalyst was prepared from sputtered Ti–Ir alloy constituted of 0.8 ± 0.2 at % Ir in α-Ti solid solution. The Ti–Ir solid solution on the Ti metal foil substrate was anodically oxidized to form amorphous TiO2–Ir and later subjected to heat treatment in air and in ammonia to prepare the final catalyst. Detailed morphological, structural, compositional, and electrochemical characterization revealed a nanoporous film with Ir single atoms and clusters that are present throughout the entire film thickness and concentrated at the Ti/TiOxNy–Ir interface as a result of the anodic oxidation mechanism. The developed TiOxNy–Ir catalyst exhibits very high oxygen evolution reaction activity in 0.1 M HClO4, reaching 1460 A g–1Ir at 1.6 V vs reference hydrogen electrode. The new preparation concept of single atom- and cluster-based thin-film catalysts has wide potential applications in electrocatalysis and beyond. In the present paper, a detailed description of the new and unique method and a high-performance thin film catalyst are provided along with directions for the future development of high-performance cluster and single-atom catalysts prepared from solid solutions
Evaluation of a corticotropin releasing hormone type 1 receptor antagonist in women with posttraumatic stress disorder: study protocol for a randomized controlled trial
Background: Pharmacologic treatment options for posttraumatic stress disorder (PTSD) are limited in number and effectiveness. Medications currently in use to treat PTSD were originally approved based on their efficacy in other disorders, such as major depression. Substantial research in PTSD suggests that increased activity of corticotropin releasing hormone (CRH)-containing circuits are involved in the pathophysiology of the disease. This Phase II trial aims to evaluate the efficacy of a CRH type 1 receptor (CRHR1) antagonist in the treatment of PTSD. Methods/design: Currently untreated adult women, ages 18 to 65 years, with a primary psychiatric diagnosis of PTSD of at least 3 months' duration, are being enrolled in a parallel-group, double-blind, placebo-controlled, randomized clinical trial evaluating the efficacy and safety of GSK561679, a novel CRHR1 receptor antagonist. GSK561679 (or matching placebo) is prescribed at a fixed dose of 350 mg nightly for six weeks. The primary trial hypothesis is that GSK561679 will reduce symptoms of PTSD, as measured by the Clinician-Administered PTSD Scale (CAPS), significantly more than placebo after six weeks of treatment. Putative biological markers of PTSD which may influence treatment response are measured prior to randomization and after five weeks' exposure to the study medication, including: fear conditioning and extinction using psychophysiological measures; variants of stress-related genes and gene expression profiles; and indices of HPA axis reactivity. In addition, the impact of PTSD and treatment on neuropsychological performance and functional capacity are assessed at baseline and after the fifth week of study medication. After completion of the six-week double blind treatment period, subjects enter a one-month follow-up period to monitor for sustained response and resolution of any adverse effects. Discussion: Considerable preclinical and human research supports the hypothesis that alterations in central nervous system CRH neuronal activity are a potential mediator of PTSD symptoms. This study is the first to assess the efficacy of a specific antagonist of a CRH receptor in the treatment of PTSD. Furthermore, the biological and neuropsychological measures included in this trial will substantially inform our understanding of the mechanisms of PTSD
- …