3,935 research outputs found
Network of Earthquakes and Recurrences Therein
We quantify the correlation between earthquakes and use the same to
distinguish between relevant causally connected earthquakes. Our correlation
metric is a variation on the one introduced by Baiesi and Paczuski (2004). A
network of earthquakes is constructed, which is time ordered and with links
between the more correlated ones. Data pertaining to the California region has
been used in the study. Recurrences to earthquakes are identified employing
correlation thresholds to demarcate the most meaningful ones in each cluster.
The distribution of recurrence lengths and recurrence times are analyzed
subsequently to extract information about the complex dynamics. We find that
the unimodal feature of recurrence lengths helps to associate typical rupture
lengths with different magnitude earthquakes. The out-degree of the network
shows a hub structure rooted on the large magnitude earthquakes. In-degree
distribution is seen to be dependent on the density of events in the
neighborhood. Power laws are also obtained with recurrence time distribution
agreeing with the Omori law.Comment: 17 pages, 5 figure
Disorder-induced critical behavior in driven diffusive systems
Using dynamic renormalization group we study the transport in driven
diffusive systems in the presence of quenched random drift velocity with
long-range correlations along the transport direction. In dimensions
we find fixed points representing novel universality classes of
disorder-dominated self-organized criticality, and a continuous phase
transition at a critical variance of disorder. Numerical values of the scaling
exponents characterizing the distributions of relaxation clusters are in good
agreement with the exponents measured in natural river networks
Universality of rain event size distributions
We compare rain event size distributions derived from measurements in
climatically different regions, which we find to be well approximated by power
laws of similar exponents over broad ranges. Differences can be seen in the
large-scale cutoffs of the distributions. Event duration distributions suggest
that the scale-free aspects are related to the absence of characteristic scales
in the meteorological mesoscale.Comment: 16 pages, 10 figure
Tracer Dispersion in a Self-Organized Critical System
We have studied experimentally transport properties in a slowly driven
granular system which recently was shown to display self-organized criticality
[Frette {\em et al., Nature} {\bf 379}, 49 (1996)]. Tracer particles were added
to a pile and their transit times measured. The distribution of transit times
is a constant with a crossover to a decaying power law. The average transport
velocity decreases with system size. This is due to an increase in the active
zone depth with system size. The relaxation processes generate coherently
moving regions of grains mixed with convection. This picture is supported by
considering transport in a cellular automaton modeling the experiment.Comment: 4 pages, RevTex, 1 Encapsulated PostScript and 4 PostScript available
upon request, Submitted to Phys. Rev. Let
Distribución espacial de Collaspidia sp (Coleoptera, Chrysomelidae) en el cultivo de papa.
Distribución espacial de Collaspidia sp (Coleoptera, Chrysomelidae) en el cultivo de papa
Avalanche Merging and Continuous Flow in a Sandpile Model
A dynamical transition separating intermittent and continuous flow is
observed in a sandpile model, with scaling functions relating the transport
behaviors between both regimes. The width of the active zone diverges with
system size in the avalanche regime but becomes very narrow for continuous
flow. The change of the mean slope, Delta z, on increasing the driving rate, r,
obeys Delta z ~ r^{1/theta}. It has nontrivial scaling behavior in the
continuous flow phase with an exponent theta given, paradoxically, only in
terms of exponents characterizing the avalanches theta = (1+z-D)/(3-D).Comment: Explanations added; relation to other model
- …