43,946 research outputs found

    Stress corrosion cracking of titanium alloys: SCC velocity: concentration of TiCl3

    Get PDF
    Stress corrosion cracking of titanium alloys, velocity of cracking in aqueous and methanol solutions and halogenated organic solvents, concentration of TiCl3 in crack

    Lagrangian acceleration statistics in turbulent flows

    Full text link
    We show that the probability densities af accelerations of Lagrangian test particles in turbulent flows as measured by Bodenschatz et al. [Nature 409, 1017 (2001)] are in excellent agreement with the predictions of a stochastic model introduced in [C. Beck, PRL 87, 180601 (2001)] if the fluctuating friction parameter is assumed to be log-normally distributed. In a generalized statistical mechanics setting, this corresponds to a superstatistics of log-normal type. We analytically evaluate all hyperflatnes factors for this model and obtain a flatness prediction in good agreement with the experimental data. There is also good agreement with DNS data of Gotoh et al. We relate the model to a generalized Sawford model with fluctuating parameters, and discuss a possible universality of the small-scale statistics.Comment: 10 pages, 2 figure

    Magneto-acoustic waves in sunspots from observations and numerical simulations

    Full text link
    We study the propagation of waves from the photosphere to the chromosphere of sunspots. From time series of cospatial Ca II H (including its line blends) intensity spectra and polarimetric spectra of Si I 1082.7 nm and He I 1083.0 nm we retrieve the line-of-sight velocity at several heights. The analysis of the phase difference and amplification spectra shows standing waves for frequencies below 4 mHz and propagating waves for higher frequencies, and allows us to infer the temperature and height where the lines are formed. Using these observational data, we have constructed a model of sunspot, and we have introduced the velocity measured with the photospheric Si I 1082.7 nm line as a driver. The numerically propagated wave pattern fits reasonably well with the observed using the lines formed at higher layers, and the simulations reproduce many of the observed features. The observed waves are slow MHD waves propagating longitudinally along field lines.Comment: proceedings of GONG 2010/SOHO 24 meeting, June 27 - July 2, 2010, Aix-en-Provence, Franc

    Characterization of a microwave frequency resonator via a nearby quantum dot

    Full text link
    We present measurements of a hybrid system consisting of a microwave transmission-line resonator and a lateral quantum dot defined on a GaAs heterostructure. The two subsystems are separately characterized and their interaction is studied by monitoring the electrical conductance through the quantum dot. The presence of a strong microwave field in the resonator is found to reduce the resonant conductance through the quantum dot, and is attributed to electron heating and modulation of the dot potential. We use this interaction to demonstrate a measurement of the resonator transmission spectrum using the quantum dot.Comment: 3 pages, 3 figure

    Properties of dust in the detached shells around U Ant, DR Ser, and V644 Sco

    Full text link
    Understanding the properties of dust produced during the asymptotic giant branch phase of stellar evolution is important for understanding the evolution of stars and galaxies. Recent observations of the carbon AGB star R Scl have shown that observations at far-infrared and submillimetre wavelengths can effectively constrain the grain sizes in the shell, while the total mass depends on the structure of the grains (solid vs. hollow or fluffy). We aim to constrain the properties of the dust observed in the submillimetre in the detached shells around the three carbon AGB stars U Ant, DR Ser, and V644 Sco, and to investigate the constraints on the dust masses and grain sizes provided by far-infrared and submm observations. We observed the carbon AGB stars U Ant, DR Ser, and V644 Sco at 870 micron using LABOCA on APEX. Combined with observations from the optical to far-infrared, we produced dust radiative transfer models of the spectral energy distributions (SEDs) with contributions from the stars, present-day mass-loss and detached shells. We tested the effect of different total dust masses and grain sizes on the SED, and attempted to consistently reproduce the SEDs from the optical to the submm. We derive dust masses in the shells of a few 10e-5 Msun, assuming spherical, solid grains. The best-fit grain radii are comparatively large, and indicate the presence of grains between 0.1 micron-2 micron. The LABOCA observations suffer from contamination from 12CO(3-2), and hence gives fluxes that are higher than the predicted dust emission at submm wavelengths. We investigate the effect on the best-fitting models by assuming different degrees of contamination and show that far-infrared and submillimetre observations are important to constrain the dust mass and grain sizes in the shells.Comment: Accepted by A&
    • …
    corecore