628 research outputs found

    Non-perturbative renormalization of the KPZ growth dynamics

    Full text link
    We introduce a non-perturbative renormalization approach which identifies stable fixed points in any dimension for the Kardar-Parisi-Zhang dynamics of rough surfaces. The usual limitations of real space methods to deal with anisotropic (self-affine) scaling are overcome with an indirect functional renormalization. The roughness exponent α\alpha is computed for dimensions d=1d=1 to 8 and it results to be in very good agreement with the available simulations. No evidence is found for an upper critical dimension. We discuss how the present approach can be extended to other self-affine problems.Comment: 4 pages, 2 figures. To appear in Phys. Rev. Let

    High dimensional behavior of the Kardar-Parisi-Zhang growth dynamics

    Full text link
    We investigate analytically the large dimensional behavior of the Kardar-Parisi-Zhang (KPZ) dynamics of surface growth using a recently proposed non-perturbative renormalization for self-affine surface dynamics. Within this framework, we show that the roughness exponent α\alpha decays not faster than α1/d\alpha\sim 1/d for large dd. This implies the absence of a finite upper critical dimension.Comment: RevTeX, 4 pages, 2 figures. To appear in Phys. Rev.

    Laplacian Fractal Growth in Media with Quenched Disorder

    Full text link
    We analyze the combined effect of a Laplacian field and quenched disorder for the generation of fractal structures with a study, both numerical and theoretical, of the quenched dielectric breakdown model (QDBM). The growth dynamics is shown to evolve from the avalanches of invasion percolation (IP) to the smooth growth of Laplacian fractals, i. e. diffusion limited aggregation (DLA) and the dielectric breakdown model (DBM). The fractal dimension is strongly reduced with respect to both DBM and IP, due to the combined effect of memory and field screening. This implies a specific relation between the fractal dimension of the breakdown structures (dielectric or mechanical) and the microscopic properties of disordered materials.Comment: 11 pages Latex (revtex), 3 postscript figures included. Submitted to PR

    Generalized Dielectric Breakdown Model

    Full text link
    We propose a generalized version of the Dielectric Breakdown Model (DBM) for generic breakdown processes. It interpolates between the standard DBM and its analog with quenched disorder, as a temperature like parameter is varied. The physics of other well known fractal growth phenomena as Invasion Percolation and the Eden model are also recovered for some particular parameter values. The competition between different growing mechanisms leads to new non-trivial effects and allows us to better describe real growth phenomena. Detailed numerical and theoretical analysis are performed to study the interplay between the elementary mechanisms. In particular, we observe a continuously changing fractal dimension as temperature is varied, and report an evidence of a novel phase transition at zero temperature in absence of an external driving field; the temperature acts as a relevant parameter for the ``self-organized'' invasion percolation fixed point. This permits us to obtain new insight into the connections between self-organization and standard phase transitions.Comment: Submitted to PR

    Nonequilibrium phase transition in a model for social influence

    Full text link
    We present extensive numerical simulations of the Axelrod's model for social influence, aimed at understanding the formation of cultural domains. This is a nonequilibrium model with short range interactions and a remarkably rich dynamical behavior. We study the phase diagram of the model and uncover a nonequilibrium phase transition separating an ordered (culturally polarized) phase from a disordered (culturally fragmented) one. The nature of the phase transition can be continuous or discontinuous depending on the model parameters. At the transition, the size of cultural regions is power-law distributed.Comment: 5 pages, 4 figure

    Statistical physics of the Schelling model of segregation

    Full text link
    We investigate the static and dynamic properties of a celebrated model of social segregation, providing a complete explanation of the mechanisms leading to segregation both in one- and two-dimensional systems. Standard statistical physics methods shed light on the rich phenomenology of this simple model, exhibiting static phase transitions typical of kinetic constrained models, nontrivial coarsening like in driven-particle systems and percolation-related phenomena.Comment: 4 pages, 3 figure

    Universality and Crossover of Directed Polymers and Growing Surfaces

    Full text link
    We study KPZ surfaces on Euclidean lattices and directed polymers on hierarchical lattices subject to different distributions of disorder, showing that universality holds, at odds with recent results on Euclidean lattices. Moreover, we find the presence of a slow (power-law) crossover toward the universal values of the exponents and verify that the exponent governing such crossover is universal too. In the limit of a 1+epsilon dimensional system we obtain both numerically and analytically that the crossover exponent is 1/2.Comment: LateX file + 5 .eps figures; to appear on Phys. Rev. Let

    Comment on: Role of Intermittency in Urban Development: A Model of Large-Scale City Formation

    Full text link
    Comment to D.H. Zanette and S.C. Manrubia, Phys. Rev. Lett. 79, 523 (1997).Comment: 1 page no figure

    On the transition to efficiency in Minority Games

    Full text link
    The existence of a phase transition with diverging susceptibility in batch Minority Games (MGs) is the mark of informationally efficient regimes and is linked to the specifics of the agents' learning rules. Here we study how the standard scenario is affected in a mixed population game in which agents with the `optimal' learning rule (i.e. the one leading to efficiency) coexist with ones whose adaptive dynamics is sub-optimal. Our generic finding is that any non-vanishing intensive fraction of optimal agents guarantees the existence of an efficient phase. Specifically, we calculate the dependence of the critical point on the fraction qq of `optimal' agents focusing our analysis on three cases: MGs with market impact correction, grand-canonical MGs and MGs with heterogeneous comfort levels.Comment: 12 pages, 3 figures; contribution to the special issue "Viewing the World through Spin Glasses" in honour of David Sherrington on the occasion of his 65th birthda

    On the criticality of inferred models

    Full text link
    Advanced inference techniques allow one to reconstruct the pattern of interaction from high dimensional data sets. We focus here on the statistical properties of inferred models and argue that inference procedures are likely to yield models which are close to a phase transition. On one side, we show that the reparameterization invariant metrics in the space of probability distributions of these models (the Fisher Information) is directly related to the model's susceptibility. As a result, distinguishable models tend to accumulate close to critical points, where the susceptibility diverges in infinite systems. On the other, this region is the one where the estimate of inferred parameters is most stable. In order to illustrate these points, we discuss inference of interacting point processes with application to financial data and show that sensible choices of observation time-scales naturally yield models which are close to criticality.Comment: 6 pages, 2 figures, version to appear in JSTA
    corecore