628 research outputs found
Non-perturbative renormalization of the KPZ growth dynamics
We introduce a non-perturbative renormalization approach which identifies
stable fixed points in any dimension for the Kardar-Parisi-Zhang dynamics of
rough surfaces. The usual limitations of real space methods to deal with
anisotropic (self-affine) scaling are overcome with an indirect functional
renormalization. The roughness exponent is computed for dimensions
to 8 and it results to be in very good agreement with the available
simulations. No evidence is found for an upper critical dimension. We discuss
how the present approach can be extended to other self-affine problems.Comment: 4 pages, 2 figures. To appear in Phys. Rev. Let
High dimensional behavior of the Kardar-Parisi-Zhang growth dynamics
We investigate analytically the large dimensional behavior of the
Kardar-Parisi-Zhang (KPZ) dynamics of surface growth using a recently proposed
non-perturbative renormalization for self-affine surface dynamics. Within this
framework, we show that the roughness exponent decays not faster than
for large . This implies the absence of a finite upper
critical dimension.Comment: RevTeX, 4 pages, 2 figures. To appear in Phys. Rev.
Laplacian Fractal Growth in Media with Quenched Disorder
We analyze the combined effect of a Laplacian field and quenched disorder for
the generation of fractal structures with a study, both numerical and
theoretical, of the quenched dielectric breakdown model (QDBM). The growth
dynamics is shown to evolve from the avalanches of invasion percolation (IP) to
the smooth growth of Laplacian fractals, i. e. diffusion limited aggregation
(DLA) and the dielectric breakdown model (DBM). The fractal dimension is
strongly reduced with respect to both DBM and IP, due to the combined effect of
memory and field screening. This implies a specific relation between the
fractal dimension of the breakdown structures (dielectric or mechanical) and
the microscopic properties of disordered materials.Comment: 11 pages Latex (revtex), 3 postscript figures included. Submitted to
PR
Generalized Dielectric Breakdown Model
We propose a generalized version of the Dielectric Breakdown Model (DBM) for
generic breakdown processes. It interpolates between the standard DBM and its
analog with quenched disorder, as a temperature like parameter is varied. The
physics of other well known fractal growth phenomena as Invasion Percolation
and the Eden model are also recovered for some particular parameter values. The
competition between different growing mechanisms leads to new non-trivial
effects and allows us to better describe real growth phenomena.
Detailed numerical and theoretical analysis are performed to study the
interplay between the elementary mechanisms. In particular, we observe a
continuously changing fractal dimension as temperature is varied, and report an
evidence of a novel phase transition at zero temperature in absence of an
external driving field; the temperature acts as a relevant parameter for the
``self-organized'' invasion percolation fixed point. This permits us to obtain
new insight into the connections between self-organization and standard phase
transitions.Comment: Submitted to PR
Nonequilibrium phase transition in a model for social influence
We present extensive numerical simulations of the Axelrod's model for social
influence, aimed at understanding the formation of cultural domains. This is a
nonequilibrium model with short range interactions and a remarkably rich
dynamical behavior. We study the phase diagram of the model and uncover a
nonequilibrium phase transition separating an ordered (culturally polarized)
phase from a disordered (culturally fragmented) one. The nature of the phase
transition can be continuous or discontinuous depending on the model
parameters. At the transition, the size of cultural regions is power-law
distributed.Comment: 5 pages, 4 figure
Statistical physics of the Schelling model of segregation
We investigate the static and dynamic properties of a celebrated model of
social segregation, providing a complete explanation of the mechanisms leading
to segregation both in one- and two-dimensional systems. Standard statistical
physics methods shed light on the rich phenomenology of this simple model,
exhibiting static phase transitions typical of kinetic constrained models,
nontrivial coarsening like in driven-particle systems and percolation-related
phenomena.Comment: 4 pages, 3 figure
Universality and Crossover of Directed Polymers and Growing Surfaces
We study KPZ surfaces on Euclidean lattices and directed polymers on
hierarchical lattices subject to different distributions of disorder, showing
that universality holds, at odds with recent results on Euclidean lattices.
Moreover, we find the presence of a slow (power-law) crossover toward the
universal values of the exponents and verify that the exponent governing such
crossover is universal too. In the limit of a 1+epsilon dimensional system we
obtain both numerically and analytically that the crossover exponent is 1/2.Comment: LateX file + 5 .eps figures; to appear on Phys. Rev. Let
Comment on: Role of Intermittency in Urban Development: A Model of Large-Scale City Formation
Comment to D.H. Zanette and S.C. Manrubia, Phys. Rev. Lett. 79, 523 (1997).Comment: 1 page no figure
On the transition to efficiency in Minority Games
The existence of a phase transition with diverging susceptibility in batch
Minority Games (MGs) is the mark of informationally efficient regimes and is
linked to the specifics of the agents' learning rules. Here we study how the
standard scenario is affected in a mixed population game in which agents with
the `optimal' learning rule (i.e. the one leading to efficiency) coexist with
ones whose adaptive dynamics is sub-optimal. Our generic finding is that any
non-vanishing intensive fraction of optimal agents guarantees the existence of
an efficient phase. Specifically, we calculate the dependence of the critical
point on the fraction of `optimal' agents focusing our analysis on three
cases: MGs with market impact correction, grand-canonical MGs and MGs with
heterogeneous comfort levels.Comment: 12 pages, 3 figures; contribution to the special issue "Viewing the
World through Spin Glasses" in honour of David Sherrington on the occasion of
his 65th birthda
On the criticality of inferred models
Advanced inference techniques allow one to reconstruct the pattern of
interaction from high dimensional data sets. We focus here on the statistical
properties of inferred models and argue that inference procedures are likely to
yield models which are close to a phase transition. On one side, we show that
the reparameterization invariant metrics in the space of probability
distributions of these models (the Fisher Information) is directly related to
the model's susceptibility. As a result, distinguishable models tend to
accumulate close to critical points, where the susceptibility diverges in
infinite systems. On the other, this region is the one where the estimate of
inferred parameters is most stable. In order to illustrate these points, we
discuss inference of interacting point processes with application to financial
data and show that sensible choices of observation time-scales naturally yield
models which are close to criticality.Comment: 6 pages, 2 figures, version to appear in JSTA
- …