497,710 research outputs found

    Simulation of the hydrogen ground state in Stochastic Electrodynamics

    Get PDF
    Stochastic electrodynamics is a classical theory which assumes that the physical vacuum consists of classical stochastic fields with average energy 12ω\frac{1}{2}\hbar \omega in each mode, i.e., the zero-point Planck spectrum. While this classical theory explains many quantum phenomena related to harmonic oscillator problems, hard results on nonlinear systems are still lacking. In this work the hydrogen ground state is studied by numerically solving the Abraham -- Lorentz equation in the dipole approximation. First the stochastic Gaussian field is represented by a sum over Gaussian frequency components, next the dynamics is solved numerically using OpenCL. The approach improves on work by Cole and Zou 2003 by treating the full 3d3d problem and reaching longer simulation times. The results are compared with a conjecture for the ground state phase space density. Though short time results suggest a trend towards confirmation, in all attempted modelings the atom ionises at longer times.Comment: 20 pages, 9 figures. Published version, minor change

    Exactly solvable su(N) mixed spin ladders

    Full text link
    It is shown that solvable mixed spin ladder models can be constructed from su(N) permutators. Heisenberg rung interactions appear as chemical potential terms in the Bethe Ansatz solution. Explicit examples given are a mixed spin-1/2 spin-1 ladder, a mixed spin-1/2 spin-3/2 ladder and a spin-1 ladder with biquadratic interactions.Comment: 7 pages, Latex, Presented at the Baxter Revolution in Mathematical Physics Conference, Feb 13-19, 200

    Aging and fluctuation-dissipation ratio in a nonequilibrium qq-state lattice model

    Full text link
    A generalized version of the nonequilibrium linear Glauber model with qq states in dd dimensions is introduced and analyzed. The model is fully symmetric, its dynamics being invariant under all permutations of the qq states. Exact expressions for the two-time autocorrelation and response functions on a dd-dimensional lattice are obtained. In the stationary regime, the fluctuation-dissipation theorem holds, while in the transient the aging is observed with the fluctuation-dissipation ratio leading to the value predicted for the linear Glauber model

    Model independent analysis of nearly L\'evy correlations

    Get PDF
    A model-independent method for the analysis of the two-particle short-range correlations is presented, that can be utilized to describe e.g. Bose-Einstein (HBT), dynamical (ridge) or other correlation functions, that have a nearly L\'evy or streched exponential shape. For the special case of L\'evy exponent alpha = 1, the earlier Laguerre expansions are recovered, for the alpha = 2 special case, a new expansion method is obtained for nearly Gaussian correlation functions. Multi-dimensional L\'evy expansions are also introduced and their potential application to analyze rigde correlation data is discussed

    Direct Searches of New Physics at CLIC

    Full text link
    The multi-TeV e+e- collider CLIC may allow for the direct study of new neutral gauge bosons or Kaluza-Klein states in the TeV range. We discuss some of the experimental aspects for the study of such resonances. Further we discuss briefly the effects of soft branes in scenarios with Large Extra Dimensions, and the production of Black Holes at CLIC.Comment: 9 pages, 4 figures, to appear in the proceedings of the LCWS02 Worksho
    corecore