847 research outputs found

    A combined genome-wide approach identifies a new potential candidate marker associated with the coat color sidedness in cattle

    Get PDF
    Coat color is one of the most important phenotypic features in livestock breeds. Cinisara is a local cattle breed generally of uniform black color which occasionally presents a particular phenotype, with animals typically display a white band along their spine, from the head to the tail, and on the ventral line (color sidedness). Therefore, this breed provides an ideal model to study the genetic components underlying phenotypic variation in coat color. A total of 63 animals, ten with sidedness phenotype and 53 with uniform black color were genotyped with Illumina Bovine 50 K. The comparison among genome-wide association study and FST analysis revealed a single nucleotide polymorphism (SNP), ARS-BFGL-NGS-55928, significantly associated with the trait. Only one gene (PLK2)was annotated near the associated SNP in a window of ±200 kb. The protein encoded by this gene is a member of the polo-like kinases, the same family of several known coat-color candidate genes. Based on the reported results, we draw the possible conclusion that the identified marker is potentially associated with the coat color sidedness in Cinisara. The local breeds with their genetic variability represent an important resource and model to study the genetic basis affecting peculiar traits. Future studies would be particularly relevant to refine these results and to better understand the genetic basis for this phenotype

    Swinging of red blood cells under shear flow

    Get PDF
    We reveal that under moderate shear stress (of the order of 0.1 Pa) red blood cells present an oscillation of their inclination (swinging) superimposed to the long-observed steady tanktreading (TT) motion. A model based on a fluid ellipsoid surrounded by a visco-elastic membrane initially unstrained (shape memory) predicts all observed features of the motion: an increase of both swinging amplitude and period (1/2 the TT period) upon decreasing the shear stress, a shear stress-triggered transition towards a narrow shear stress-range intermittent regime of successive swinging and tumbling, and a pure tumbling motion at lower shear stress-values.Comment: 4 pages 5 figures submitted to Physical Review Letter

    Sensitivity of cloud radiative forcing to changes of microphysical parameters measured by the CLOUDS mission

    Get PDF
    CLOUDS (a Cloud and Radiation monitoring satellite) is a study for a satellite mission designed to provide the gross vertical profile, the internal structure, the radiative and the imaging features of clouds. This subject is addressed by several missions designed for process study intent. CLOUDS, instead, is designed for providing data of routine use in long-term NumericalWeather Prediction (NWP) and General Circulation Model (GCM). User requirements have been collected from various sources, and instruments concepts derived to meet those requirements. However, to establish the sensitivity of a GCM to the targeted parameters and confirm the soundness of the specified requirements (mainly accuracy and vertical resolution), special effort had to be placed. The present paper offers a rather complete assessment of the range of usefulness that CLOUDS measurements may have on the radiative calculation. To this purpose, the cloud forcing was computed as a function of cloud parameters by using a radiative model that has been applied in the GCM of the Laboratory for Atmospheres at the NASA Goddard Space Flight Center. The results show that, in most cases, the model response to the addressed cloud parameters is good if the error is within the specified limit. This is better demonstrated for relatively large particle sizes, for ice better than for liquid water, for low optical thickness and for low cloud cover. The model, however, suggests that more stringent requirements would be appropriate when small particles are considered

    Evidence for narrow resonant structures at W1.68W \approx 1.68 and W1.72W \approx 1.72 GeV in real Compton scattering off the proton

    Get PDF
    First measurement of the beam asymmetry Σ\Sigma for Compton scattering off the proton in the energy range Eγ=0.851.25E_{\gamma}=0.85 - 1.25 GeV is presented. The data reveals two narrow structures at Eγ=1.036E_{\gamma}= 1.036 and Eγ=1.119E_{\gamma}=1.119 GeV. They may signal narrow resonances with masses near 1.681.68 and 1.721.72 GeV, or they may be generated by the sub-threshold KΛK\Lambda and ωp\omega p production. Their decisive identification requires additional theoretical and experimental efforts.Comment: Published versio

    Classification and imaging of ankle impingement syndromes.

    Get PDF
    Learning Objectives: To review the classification of ankle impingement syndromes. To describe and illustrate the spectrum of appearance of ankle impingement syndromes using conventional radiography (CR), multidetector computed tomography (MDCT), ultrasonography (US), magnetic resonance imaging (MRI), and MR arthrography (MRA). Background: Ankle impingement syndromes are a spectrum of diseases common in both athletic and general population and depend on many causes that can be distinguished by the type of tissue which determines the conflict (bone, fibrous, synovial). In general, classification of ankle impingement syndromes takes into account the anatomical site relative to the tibio-tarsal joint, and thus they may be classified as anterior, antero-medial, antero-lateral, posterior and postero-medial. Imaging findings: CR alone already suffices to demonstrate a bone impingement in most cases, while there is necessity to use MDCT where the site of impingement is in an anatomical site not clearly demonstrable by CR because of the presence of superimposed structures. US has the ability to recognize the presence of an anterior impingement and it may assess tendon disorders (stenosing tenosynovitis) which may be an associate sign of an impingement syndrome. MRI is the method of choice to assess synovial or fibrous impingement syndromes thanks to its excellent contrast resolution. MRA is used when there is capsular thickening that could not be detected by simple MRI. Conclusion: Diagnostic imaging has a very important role in the recognition of the cause of impingement and of the anatomical site where such a conflict takes place, thus allowing a correct therapeutic management

    GPS radio occultation sounding to support General Circulation Models

    Get PDF
    An assessment of the suitability of the horizontal and vertical resolution of GPS radio occultation measurements for climate studies is carried out. Simple physical relations are used to estimate the consistency between horizontal and vertical resolutions of radio occultation measurements as compared with those of the existing observing systems. In particular, the horizontal scale of the upper troposphere water vapour is investigated by analysing the variability of the refractivity index using the re-analysis data from NCEP/NCAR. The computation shows that the 300 km horizontal resolution of GPS radio occultation is within the useful range and captures the water vapour variations that are relevant for climatological purposes. Next, focusing the analysis on the requirements of the vertical resolution, we study the sensitivity of a radiative model to changes in the vertical resolution, assessing the impacts of these variations on the atmospheric equilibrium. For this purpose one reference profile and other five with lower vertical resolutions are used to perform the experiment. Results show that the model is sensitive to variations in the vertical sampling, suggesting that high vertical resolution measurements are necessary for an accurate observation of the atmosphere. To further assess the influence of the vertical sampling, the thermal tropopause height dependence on the number of layers considered is studied. Results indicate that the highest vertical resolution is needed for determining the radiative component of the tropopause dynamics

    GPS radio occultation sounding to support General Circulation Models

    Get PDF
    An assessment of the suitability of the horizontal and vertical resolution of GPS radio occultation measurements for climate studies is carried out. Simple physical relations are used to estimate the consistency between horizontal and vertical resolutions of radio occultation measurements as compared with those of the existing observing systems. In particular, the horizontal scale of the upper troposphere water vapour is investigated by analysing the variability of the refractivity index using the re-analysis data from NCEP/NCAR. The computation shows that the 300 km horizontal resolution of GPS radio occultation is within the useful range and captures the water vapour variations that are relevant for climatological purposes. Next, focusing the analysis on the requirements of the vertical resolution, we study the sensitivity of a radiative model to changes in the vertical resolution, assessing the impacts of these variations on the atmospheric equilibrium. For this purpose one reference profile and other five with lower vertical resolutions are used to perform the experiment. Results show that the model is sensitive to variations in the vertical sampling, suggesting that high vertical resolution measurements are necessary for an accurate observation of the atmosphere. To further assess the influence of the vertical sampling, the thermal tropopause height dependence on the number of layers considered is studied. Results indicate that the highest vertical resolution is needed for determining the radiative component of the tropopause dynamics

    Genome-wide scan for Runs of Homozygosity in Valle del Belice sheep

    Get PDF
    The current availability of very large numbers of single nucleotide polymorphisms (SNPs) throughout the genome makes these markers particularly suitable for the detection of genomic regions where a reduction in heterozygosity occurred and offers new opportunities to improve the accuracy of inbreeding (F) estimates. Runs of homozygosity (ROH) are contiguous lengths of homozygous segments of the genome where the two haplotypes inherited from the parents are identical. Here, we investigated the occurrence and the distribution of ROH in medium-density SNP genotypes (~ 50 000) in order to characterize autozygosity in 512 individuals of Valle del Belice sheep and identify the regions of the genome with high ROH frequencies. A total of 11 629 ROH were identified. All individuals displayed at least one ROH > 1 Mb. The mean value of FROH>1Mb was 0.084\ub10.061. ROH that were shorter than 10 Mb predominated. The highest coverage of chromosome (OAR) by ROH was observed on OAR24, whereas the lowest one was observed on OAR1. A typical pattern was observed for the number of ROH per OAR with higher values in the first three chromosomes. There was a considerable difference among animals for the number of ROH segments and the length of the genome covered by ROH. The genomic regions most commonly associated with ROH were identified by selecting the top 1% of the SNPs most commonly observed in ROH within breed. A total of 239 SNPs were considered as candidate SNPs and we identified 107 potential candidate genes that may be under directional selection. Six genomic regions located on six chromosomes (OAR2, OAR3, OAR4, OAR10, OAR11 and OAR23), corresponding to ROH island, presented hotspot of autozygosity. According to KEGG database, a majority of the genes were involved in multiple signaling and signal transduction pathways in a wide variety of cellular and biochemical processes. The ROH islands spanned several candidate genes which influence traits that are associated with adaptability and with the regulation of immune responses (NPAS2, PDCL3, SERPINF1 and SERPINF2) and we did not identified candidate genes with important influence on milk production traits in sheep. The Valle del Belice breed is subjected to limited breeding selection programs for milk production traits, but shows excellent adaptability to the local environments. Therefore, these results suggest at least a partial role of natural selection in shaping the genome of Valle del Belice sheep breed

    Genome wide Copy Number Variation (CNV) detection in Cinisara cattle breed

    Get PDF
    Copy Number Variations (CNVs) are classes of polymorphic genomic regions including deletions, duplications and insertions of DNA fragments from at least 0.5 kb up to several Mb. CNV represents an important source of genetic variability that provides genomics structural information complementary to the single nucleotide polymorphism (SNP) data. Some CNVs have been shown to be important in both normal phenotypic variability and disease susceptibility in livestock. Several approaches to identify CNVs including FISH, aCGH, SNP array or NGS, were proposed and among these SNP genotyping is relatively low cost, high-throughput and high coverage method. The aim of this study was to identify the CNVs in 71 animals of Cinisara breed using Illumina BovineSNP50 BeadChip v2. PennCNV software, which incorporates Log R ratio and B allele frequency at each SNP marker, was used to identify CNVs. Seven animals showed not shared CNVs, as well as autosomes 19, 21, 22. Chromosome 25 presented no CNVs at all. A final number of 322 CNVs were detected. The average number of CNVs was 4.5 per individual, with an average length and median size of 143.04 kb and 122.14 kb, respectively. All CNVs were grouped in CNV regions (CNVRs) and a total of 107 CNVRs, ranged from 50 to ~500 kb, were detected, which covered 4.90 Mb of polymorphic sequence and corresponded to 0.18% of the total genome length. In particular, we found 81 CNVRs with only gain (duplication), 22 with only loss (deletion), and four CNVRs with both. Furthermore, 8 CNVRs with >1%, 77 with >2.5%, and 22 with >5% frequency, were found. CNVRs having the highest frequency were located on Chr3:120501439-120647330 and Chr23:34673581-35007295, whereas the greatest number of genes was mapped in only one CNVR located on Chr 17:74123863-74393620. A total of 241 genes were included in the identified CNVRs. According to KEGG and DAVID database, most of the genes were involved in multiple signaling and signal transduction pathways in a wide variety of cellular and biochemical processes, such as immune response, adaptability, and olfactory receptors pathway. Further studies, using different algorithms and validating the CNVs discovered, will be conducted to corroborate these preliminary results on the CNVRs detected. These results will be used for the investigation of genomic changes and features of interest in the Cinisara breed, such as for association with functional or production traits and for biodiversity studies
    corecore