130 research outputs found

    Mapping of mutation-sensitive sites in protein-like chains

    Get PDF
    In this work we have studied, with the help of a simple on-lattice model, the distribution pattern of sites sensitive to point mutations ('hot' sites) in protein-like chains. It has been found that this pattern depends on the regularity of the matrix that rules the interaction between different kinds of residues. If the interaction matrix is dominated by the hydrophobic effect (Miyazawa Jernigan like matrix), this distribution is very simple - all the 'hot' sites can be found at the positions with maximum number of closest nearest neighbors (bulk). If random or nonlinear corrections are added to such an interaction matrix the distribution pattern changes. The rising of collective effects allows the 'hot' sites to be found in places with smaller number of nearest neighbors (surface) while the general trend of the 'hot' sites to fall into a bulk part of a conformation still holds.Comment: 15 pages, 6 figure

    Resonant THz sensor for paper quality monitoring using THz fiber Bragg gratings

    Full text link
    We report fabrication of THz fiber Bragg gratings (TFBG) using CO2 laser inscription on subwavelength step-index polymer fibers. A fiber Bragg grating with 48 periods features a ~4 GHz-wide stop band and ~15 dB transmission loss in the middle of a stop band. The potential of such gratings in design of resonant sensor for monitoring of paper quality is demonstrated. Experimental spectral sensitivity of the TFBG-based paper thickness sensor was found to be ~ -0.67 GHz / 10 um. A 3D electromagnetic model of a Bragg grating was used to explain experimental findings

    Low-Loss THz Waveguide Bragg Grating using a Two-Wire Waveguide and a Paper Grating

    Full text link
    We propose a novel kind of the low-loss THz Waveguide Bragg Grating (TWBG) fabricated using plasmonic two-wire waveguide and a micromachined paper grating for potential applications in THz communications. Two TWBGs were fabricated with different periods and lengths. Transmission spectra of these TWBGs show 17 dB loss and 14 dB loss in the middle of their respective stop bands at 0.637 THz and 0.369 THz. Insertion loss of 1-4 dB in the whole 0.1-0.7 THz region was also measured. Finally, TWBG modal dispersion relation, modal loss and field distributions were studied numerically, and low-loss, high coupling efficiency operation of TWBGs was confirmed

    Interferometric fiber-optic bending / nano-displacement sensor using plastic dual-core fiber

    Full text link
    We demonstrate an interferometric fiber-optic bending/micro-displacement sensor based on a plastic dual-core fiber with one end coated with a silver mirror. The two fiber cores are first excited with the same laser beam, the light in each core is then back-reflected at the mirror-coated fiber-end, and, finally, the light from the two cores is made to interfere at the coupling end. Bending of the fiber leads to shifting interference fringes that can be interrogated with a slit and a single photodetector. We find experimentally that the resolution of our bending sensor is ~3x10-4 m-1 for sensing of bending curvature, as well as ~70 nm for sensing of displacement of the fiber tip. We demonstrate operation of our sensor using two examples. One is weighting of the individual micro-crystals of salt, while the other one is monitoring dynamics of isopropanol evaporation

    Vortex families near a spectral edge in the Gross-Pitaevskii equation with a two-dimensional periodic potential

    Full text link
    We examine numerically vortex families near band edges of the Bloch wave spectrum in the Gross--Pitaevskii equation with a two-dimensional periodic potential and in the discrete nonlinear Schroedinger equation. We show that besides vortex families that terminate at a small distance from the band edges via fold bifurcations there exist vortex families that are continued all way to the band edges.Comment: 12 pages, 8 figure

    Adaptive design of nano-scale dielectric structures for photonics

    Full text link
    Using adaptive algorithms, the design of nano-scale dielectric structures for photonic applications is explored. Widths of dielectric layers in a linear array are adjusted to match target responses of optical transmission as a function of energy. Two complementary approaches are discussed. The first approach uses adaptive local random updates and progressively adjusts individual dielectric layer widths. The second approach is based on global updating functions in which large subgroups of layers are adjusted simultaneously. Both schemes are applied to obtain specific target responses of the transmission function within selected energy windows, such as discontinuous cut-off or power-law decay filters close to a photonic band edge. These adaptive algorithms are found to be effective tools in the custom design of nano-scale photonic dielectric structures.Comment: 4 pages Revtex, 4 embedded EPS figure
    • …
    corecore