10 research outputs found

    A note on mean testing for high dimensional multivariate data under non-normality

    No full text
    A test statistic is considered for testing a hypothesis for the mean vector for multivariate data, when the dimension of the vector, p, may exceed the number of vectors, n, and the underlying distribution need not necessarily be normal. With n,p→∞, and under mild assumptions, but without assuming any relationship between n and p, the statistic is shown to asymptotically follow a chi-square distribution. A by product of the paper is the approximate distribution of a quadratic form, based on the reformulation of the well-known Box's approximation, under high-dimensional set up. Using a classical limit theorem, the approximation is further extended to an asymptotic normal limit under the same high dimensional set up. The simulation results, generated under different parameter settings, are used to show the accuracy of the approximation for moderate n and large p

    Estimation of a Multiplicative Covariance Structure

    No full text
    We consider a Kronecker product structure for large covariance matrices, which has the feature that the number of free parameters increases logarithmically with the dimensions of the matrix. We propose an estimation method of the free parameters based on the log linear property of this structure, and also a Quasi-Likelihood method. We establish the rate of convergence of the estimated parameters when the size of the matrix diverges. We also establish a CLT for our method. We apply the method to portfolio choice for S&P500 daily returns and compare with sample covariance based methods and with the recent Fan et al. (2013) method
    corecore