31 research outputs found

    Entropy-driven formation of a chiral liquid-crystalline phase of helical filaments

    Get PDF
    Author Posting. © The Authors, 2006. This article is posted here by permission of American Physical Society for personal use, not for redistribution. The definitive version was published in Physical Review Letters 96 (2006): 018305, doi:10.1103/PhysRevLett.96.018305.We study the liquid-crystalline phase behavior of a concentrated suspension of helical flagella isolated from Salmonella typhimurium. Flagella are prepared with different polymorphic states, some of which have a pronounced helical character while others assume a rodlike shape. We show that the static phase behavior and dynamics of chiral helices are very different when compared to simpler achiral hard rods. With increasing concentration, helical flagella undergo an entropy-driven first order phase transition to a liquid-crystalline state having a novel chiral symmetry.M. S. and R. O. are supported by NIH Grant No. EB002583

    Construction and composition of the squid pen from Doryteuthis pealeii

    Get PDF
    Author Posting. © University of Chicago Press, 2019. This article is posted here by permission of University of Chicago Press for personal use, not for redistribution. The definitive version was published in Messerli, M. A., Raihan, M. J., Kobylkevich, B. M., Benson, A. C., Bruening, K. S., Shribak, M., Rosenthal, J. J. C., & Sohn, J. J. Construction and composition of the squid pen from Doryteuthis pealeii. Biological Bulletin. 237(1), (2019): 1-15, doi:10.1086/704209.The pen, or gladius, of the squid is an internalized shell. It serves as a site of attachment for important muscle groups and as a protective barrier for the visceral organs. The pen’s durability and flexibility are derived from its unique composition of chitin and protein. We report the characterization of the structure, development, and composition of pens from Doryteuthis pealeii. The nanofibrils of the polysaccharide β-chitin are arranged in an aligned configuration in only specific regions of the pen. Chitin is secreted early in development, enabling us to characterize the changes in pen morphology prior to hatching. The chitin and proteins are assembled in the shell sac surrounded by fluid that has a significantly different ionic composition from squid plasma. Two groups of proteins are associated with the pen: those on its surface and those embedded within the pen. Only 20 proteins are identified as embedded within the pen. Embedded proteins are classified into six groups, including chitin associated, protease, protease inhibitors, intracellular, extracellular matrix, and those that are unknown. The pen proteins share many conserved domains with proteins from other chitinous structures. We conclude that the pen is one of the least complex, load-bearing, chitin-rich structures currently known and is amenable to further studies to elucidate natural construction mechanisms using chitin and protein.We thank John Dowling for financial support. We thank Kasia Hammar and Louie Kerr of the Marine Biological Laboratory Central Microscopy Facility for help obtaining scanning electron micrographs. We thank Bogdan Budnik and Renee Robinson from the Mass Spectrometry and Proteomics Resource Laboratory for their help and advice with protein identification. We thank Shin-Yi Marzano and Chenchen Feng of South Dakota State University for help with rapid amplification of cDNA ends. Funding for this work was provided by the Eugene and Millicent Bell Fellowship Fund in Tissue Engineering (MAM), an Agriculture and Biological Sciences Undergraduate Research Award (KSB), National Institutes of Health grant R01 GM101701 (MS), National Science Foundation grant IOS1557748 (JJCR), and Israel-United States Binational Science Foundation 2013094 (JJCR). Literature Cited2020-07-0

    Photo-elastic properties of the wing imaginal disc of Drosophila

    Full text link
    In the study of developmental biology, the physical properties and constraints of the developing tissues are of great importance. In spite of this, not much is known about the elastic properties of biologically relevant tissues that are studied in biology labs. Here, we characterize properties of the wing imaginal disc of Drosophila, which is a precursor organ intensely studied in the framework of growth control and cell polarity. In order to determine the possibility of measuring mechanical stresses inside the tissue during development, we quantify the photo-elastic properties of the tissue by direct mechanical manipulation. We obtain a photo-elastic constant of [Formula: see text]

    Capturing the Surface Texture and Shape of Pollen: A Comparison of Microscopy Techniques

    Get PDF
    Research on the comparative morphology of pollen grains depends crucially on the application of appropriate microscopy techniques. Information on the performance of microscopy techniques can be used to inform that choice. We compared the ability of several microscopy techniques to provide information on the shape and surface texture of three pollen types with differing morphologies. These techniques are: widefield, apotome, confocal and two-photon microscopy (reflected light techniques), and brightfield and differential interference contrast microscopy (DIC) (transmitted light techniques). We also provide a first view of pollen using super-resolution microscopy. The three pollen types used to contrast the performance of each technique are: Croton hirtus (Euphorbiaceae), Mabea occidentalis (Euphorbiaceae) and Agropyron repens (Poaceae). No single microscopy technique provided an adequate picture of both the shape and surface texture of any of the three pollen types investigated here. The wavelength of incident light, photon-collection ability of the optical technique, signal-to-noise ratio, and the thickness and light absorption characteristics of the exine profoundly affect the recovery of morphological information by a given optical microscopy technique. Reflected light techniques, particularly confocal and two-photon microscopy, best capture pollen shape but provide limited information on very fine surface texture. In contrast, transmitted light techniques, particularly differential interference contrast microscopy, can resolve very fine surface texture but provide limited information on shape. Texture comprising sculptural elements that are spaced near the diffraction limit of light (∼250 nm; NDL) presents an acute challenge to optical microscopy. Super-resolution structured illumination microscopy provides data on the NDL texture of A. repens that is more comparable to textural data from scanning electron microscopy than any other optical microscopy technique investigated here. Maximizing the recovery of morphological information from pollen grains should lead to more robust classifications, and an increase in the taxonomic precision with which ancient vegetation can be reconstructed

    Orientation-Independent Differential Interference Contrast Microscopy

    No full text

    Scanned aperture polarized light microscope with liquid crystal compensator

    No full text

    Fluorescence polarization of green fluorescence protein

    No full text
    We report here the striking anisotropy of fluorescence exhibited by crystals of native green fluorescence protein (GFP). The crystals were generated by water dialysis of highly purified GFP obtained from the jellyfish Aequorea. We find that the fluorescence becomes six times brighter when the excitation, or emission, beam is polarized parallel (compared with perpendicular) to the crystal long axis. Thus, the major dipoles of the fluorophores must be oriented very nearly parallel to the crystal long axis. Observed in a polarizing microscope between parallel polars instead of either a polarizer or analyzer alone, the fluorescence polarization ratio rises to an unexpectedly high value of about 30:1, nearly the product of the fluorescence excitation and emission ratios, suggesting a sensitive method for measuring fluorophore orientations, even of a single fluorophore molecule. We have derived equations that accurately describe the relative fluorescence intensities of crystals oriented in various directions, with the polarizer and analyzer arranged in different configurations. The equations yield relative absorption and fluorescence coefficients for the four transition dipoles involved. Finally, we propose a model in which the elongated crystal is made of GFP molecules that are tilted 60° to align the fluorophores parallel to the crystal long axis. The unit layer in the model may well correspond to the arrangement of functional GFP molecules, to which resonant energy is efficiently transmitted from Ca(2+)-activated aequorin, in the jellyfish photophores
    corecore