28 research outputs found
<i>NTRK</i> Therapy among Different Types of Cancers, Review and Future Perspectives
Neurotrophic tyrosine receptor kinase (NTRK) has been a remarkable therapeutic target for treating different malignancies, playing an essential role in oncogenic signaling pathways. Groundbreaking trials like NAVIGATE led to the approval of NTRK inhibitors by the Food and Drug Administration (FDA) to treat different malignancies, significantly impacting current oncology treatment. Accurate detection of NTRK gene fusion becomes very important for possible targeted therapy. Various methods to detect NTRK gene fusion have been applied widely based on sensitivity, specificity, and accessibility. The utility of different tests in clinical practice is discussed in this study by providing insights into their effectiveness in targeting patients who may benefit from therapy. Widespread use of NTRK inhibitors in different malignancies could remain limited due to resistance mechanisms that cause challenges to medication efficacy in addition to common side effects of the medications. This review provides a succinct overview of the application of NTRK inhibitors in various types of cancer by emphasizing the critical clinical significance of NTRK fusion gene detection. The discussion also provides a solid foundation for understanding the current challenges and potential changes for improving the efficacy of NTRK inhibitor therapy to treat different malignancies
Liver fibrosis: Pathophysiology and clinical implications
Liver fibrosis is a clinically significant finding that has major impacts on patient morbidity and mortality. The mechanism of fibrosis involves many different cellular pathways, but the major cell type involved appears to be hepatic stellate cells. Many liver diseases, including Hepatitis B, C and fatty liver disease cause ongoing hepatocellular damage leading to liver fibrosis. No matter the cause of liver disease, liver related mortality increases exponentially with increasing fibrosis. The progression to cirrhosis brings more dramatic mortality and higher incidence of hepatocellular carcinoma. Fibrosis can also affect outcomes following liver transplantation in adult and pediatric patients and require retransplantation. Drugs exist to treat Hepatitis B and Hepatitis C that reverse fibrosis in patients with those viral diseases, but there are currently no therapies to directly treat liver fibrosis. Several mouse models of chronic liver diseases have been successfully reversed using novel drug targets with current therapies focusing mostly on prevention of myofibroblast activation. Further research in these areas could lead to development of drugs to treat fibrosis, which will have invaluable impact on patient survival
Recommended from our members