717 research outputs found

    Quantum Nernst effect in a bismuth single crystal

    Full text link
    We report a theoretical calculation explaining the quantum Nernst effect observed experimentally in a bismuth single crystal. Generalizing the edge-current picture in two dimensions, we show that the peaks of the Nernst coefficient survive in three dimensions due to a van Hove singularity. We also evaluate the phonon-drag effect on the Nernst coefficient numerically. Our result agrees with the experimental result for a bismuth single crystal.Comment: 4 pages, 4 figures, to be published in Proceedings of ISQM-Tokyo '0

    Coherently tunable third-order nonlinearity in a nanojunction

    Full text link
    A possibility of tuning the phase of the third-order Kerr-type nonlinear susceptibility in a system consisting of two interacting metal nanospheres and a nonlinearly polarizable molecule is investigated theoretically and numerically. It is shown that by varying the relative inter-sphere separation, it is possible to tune the phase of the effective nonlinear susceptibility \chi^{(3)}(\omega;\omega,\omega,-\omega)inthewholerangefrom0to in the whole range from 0 to 2\pi$.Comment: 10 pages 5 figure

    HETE Observations of the Gamma-Ray Burst GRB030329: Evidence for an Underlying Soft X-ray Component

    Full text link
    An exceptionally intense gamma-ray burst, GRB030329, was detected and localized by the instruments on board the High Energy Transient Explorer satellite (HETE) at 11:37:14 UT on 29 March 2003. The burst consisted of two \~10s pulses of roughly equal brightness and an X-ray tail lasting >100s. The energy fluence in the 30-400 keV energy band was 1.08e-4 erg/cm2, making GRB030329 one of the brightest GRBs ever detected. Communication of a 2 arcmin error box 73 minutes after the burst allowed the rapid detection of a counterpart in the optical, X-ray, radio and the ensuing discovery of a supernova with most unusual characteristics. Analyses of the burst lightcurves reveal the presence of a distinct, bright, soft X-ray component underlying the main GRB: the 2-10 keV fluence of this component is ~7e-6 erg/cm2. The main pulses of GRB030329 were preceded by two soft, faint, non-thermal bumps. We present details of the HETE observations of GRB030329.Comment: 22 pages, 5 figures, to be published in ApJ 617, no. 2 (10 December 2004). Referee comments have been incorporated; results of improved spectral analysis are include

    Design and Performance of the Wide-Field X-Ray Monitor on Board the High-Energy Transient Explorer 2

    Full text link
    The Wide-field X-ray Monitor (WXM) is one of the scientific instruments carried on the High Energy Transient Explorer 2 (HETE-2) satellite launched on 2000 October 9. HETE-2 is an international mission consisting of a small satellite dedicated to provide broad-band observations and accurate localizations of gamma-ray bursts (GRBs). A unique feature of this mission is its capability to determine and transmit GRB coordinates in almost real-time through the burst alert network. The WXM consists of three elements: four identical Xe-filled one-dimensional position-sensitive proportional counters, two sets of one-dimensional coded apertures, and the main electronics. The WXM counters are sensitive to X-rays between 2 keV and 25 keV within a field-of-view of about 1.5 sr, with a total detector area of about 350 cm2^2. The in-flight triggering and localization capability can produce a real-time GRB location of several to 30 arcmin accuracy, with a limiting sensitivity of 10710^{-7} erg cm2^{-2}. In this report, the details of the mechanical structure, electronics, on-board software, ground and in-flight calibration, and in-flight performance of the WXM are discussed.Comment: 28 pages, 24 figure

    The X-ray CCD camera of the MAXI Experiment on the ISS/JEM

    Full text link
    MAXI, Monitor of All-sky X-ray Image, is the X-ray observatory on the Japanese experimental module (JEM) Exposed Facility (EF) on the International Space Station (ISS). MAXI is a slit scanning camera which consists of two kinds of X-ray detectors: one is a one-dimensional position-sensitive proportional counter with a total area of 5000cm2\sim 5000 cm^2, the Gas Slit Camera (GSC), and the other is an X-ray CCD array with a total area 200cm2\sim 200 cm^2, the Solid-state Slit Camera (SSC). The GSC subtends a field of view with an angular dimension of 1×180^\circ\times 180^\circ while the SSC subtends a field of view with an angular dimension of 1^\circ times a little less than 180^\circ. In the course of one station orbit, MAXI can scan almost the entire sky with a precision of 1^\circ and with an X-ray energy range of 0.5-30 keV. We have developed the engineering model of CCD chips and the analogue electronics for the SSC. The energy resolution of EM CCD for Mn Kα\alpha has a full-width at half maximum of \simeq 182 eV. Readout noise is \simeq 11 e^- rms.Comment: 10 pages, 4 figures Accepted for Nuclear Instruments and Method in Physics Researc
    corecore