343 research outputs found

    Mitochondrial decay in aging

    Get PDF
    AbstractSeveral mitochondrial functions decline with age. The contributing factors include, the intrinsic rate of proton leakage across the inner mitochondrial membrane (a correlate of oxidant formation), decreased membrane fluidity, and decreased levels and function of cardiolipin, which supports the function of many of the proteins of the inner mitochondrial membrane. Oxidants generated by mitochondria appear to be the major source of the oxidative lesions that accumulate with age. Evidence supports the suggestion that age-associated accumulation of mitochondrial deficits due to oxidative damage is likely to be a major contributor to cellular, tissue, and organismal aging

    Climate change challenges, plant science solutions

    Get PDF
    Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community

    Occipital nerve block is effective in craniofacial neuralgias but not in idiopathic persistent facial pain

    Get PDF
    Occipital nerve block (ONB) has been used in several primary headache syndromes with good results. Information on its effects in facial pain is sparse. In this chart review, the efficacy of ONB using lidocaine and dexamethasone was evaluated in 20 patients with craniofacial pain syndromes comprising 8 patients with trigeminal neuralgia, 6 with trigeminal neuropathic pain, 5 with persistent idiopathic facial pain and 1 with occipital neuralgia. Response was defined as an at least 50% reduction of original pain. Mean response rate was 55% with greatest efficacy in trigeminal (75%) and occipital neuralgia (100%) and less efficacy in trigeminal neuropathic pain (50%) and persistent idiopathic facial pain (20%). The effects lasted for an average of 27Β days with sustained benefits for 69, 77 and 107Β days in three patients. Side effects were reported in 50%, albeit transient and mild in nature. ONBs are effective in trigeminal pain involving the second and third branch and seem to be most effective in craniofacial neuralgias. They should be considered in facial pain before more invasive approaches, such as thermocoagulation or vascular decompression, are performed, given that side effects are mild and the procedure is minimally invasive

    Mitochondria-Specific Accumulation of Amyloid Ξ² Induces Mitochondrial Dysfunction Leading to Apoptotic Cell Death

    Get PDF
    Mitochondria are best known as the essential intracellular organelles that host the homeostasis required for cellular survival, but they also have relevance in diverse disease-related conditions, including Alzheimer's disease (AD). Amyloid Ξ² (AΞ²) peptide is the key molecule in AD pathogenesis, and has been highlighted in the implication of mitochondrial abnormality during the disease progress. Neuronal exposure to AΞ² impairs mitochondrial dynamics and function. Furthermore, mitochondrial AΞ² accumulation has been detected in the AD brain. However, the underlying mechanism of how AΞ² affects mitochondrial function remains uncertain, and it is questionable whether mitochondrial AΞ² accumulation followed by mitochondrial dysfunction leads directly to neuronal toxicity. This study demonstrated that an exogenous AΞ²1–42 treatment, when applied to the hippocampal cell line of mice (specifically HT22 cells), caused a deleterious alteration in mitochondria in both morphology and function. A clathrin-mediated endocytosis blocker rescued the exogenous AΞ²1–42-mediated mitochondrial dysfunction. Furthermore, the mitochondria-targeted accumulation of AΞ²1–42 in HT22 cells using AΞ²1–42 with a mitochondria-targeting sequence induced the identical morphological alteration of mitochondria as that observed in the APP/PS AD mouse model and exogenous AΞ²1–42-treated HT22 cells. In addition, subsequent mitochondrial dysfunctions were demonstrated in the mitochondria-specific AΞ²1–42 accumulation model, which proved indistinguishable from the mitochondrial impairment induced by exogenous AΞ²1–42-treated HT22 cells. Finally, cellular toxicity was directly induced by mitochondria-targeted AΞ²1–42 accumulation, which mimics the apoptosis process in exogenous AΞ²1–42-treated HT22 cells. Taken together, these results indicate that mitochondria-targeted AΞ²1–42 accumulation is the necessary and sufficient condition for AΞ²-mediated mitochondria impairments, and leads directly to cellular death rather than along with other AΞ²-mediated signaling alterations

    Hepatic oxidative DNA damage is associated with increased risk for hepatocellular carcinoma in chronic hepatitis C

    Get PDF
    Although the oxidative stress frequently occurs in patients with chronic hepatitis C, its role in future hepatocellular carcinoma (HCC) development is unknown. Hepatic 8-hydroxydeoxyguanosine (8-OHdG) was quantified using liver biopsy samples from 118 naΓ―ve patients who underwent liver biopsy from 1995 to 2001. The predictability of 8-OHdG for future HCC development and its relations to epidemiologic, biochemical and histological baseline characteristics were evaluated. During the follow-up period (mean was 6.7Β±3.3 years), HCC was identified in 36 patients (30.5%). Univariate analysis revealed that 16 variables, including 8-OHdG counts (65.2Β±20.2 vs 40.0Β±23.5 cells per 105 μm2, P<0.0001), were significantly different between patients with and without HCC. Cox proportional hazard analysis showed that the hepatic 8-OHdG (P=0.0058) and fibrosis (P=0.0181) were independent predicting factors of HCC. Remarkably, 8-OHdG levels were positively correlated with body and hepatic iron storage markers (vs ferritin, P<0.0001 vs hepatic iron score, P<0.0001). This study showed that oxidative DNA damage is associated with increased risk for HCC and hepatic 8-OHdG levels are useful as markers to identify the extreme high-risk subgroup. The strong correlation between hepatic DNA damage and iron overload suggests that the iron content may be a strong mediator of oxidative stress and iron reduction may reduce HCC incidence in patients with chronic hepatitis C

    Hepatitis C virus to hepatocellular carcinoma

    Get PDF
    Hepatitis C virus causes acute and chronic hepatitis and can lead to permanent liver damage and hepatocellular carcinoma (HCC) in a significant number of patients via oxidative stress, insulin resistance (IR), fibrosis, liver cirrhosis and HCV induced steatosis. HCV induced steatosis and oxidative stress causes steato-hepatitis and these pathways lead to liver injury or HCC in chronic HCV infection. Steatosis and oxidative stress crosstalk play an important role in liver damage in HCV infection. This Review illustrates viral and host factors which induce Oxidative stress, steatosis and leads toward HCC. It also expresses Molecular cascade which leads oxidative stress and steatosis to HCC

    Mitochondrial Dysfunction and Apoptosis in Cumulus Cells of Type I Diabetic Mice

    Get PDF
    Impaired oocyte quality has been demonstrated in diabetic mice; however, the potential pathways by which maternal diabetes exerts its effects on the oocyte are poorly understood. Cumulus cells are in direct contact with the oocyte via gap junctions and provide essential nutrients to support oocyte development. In this study, we investigated the effects of maternal diabetes on the mitochondrial status in cumulus cells. We found an increased frequency of fragmented mitochondria, a decreased transmembrane potential and an aggregated distribution of mitochondria in cumulus cells from diabetic mice. Furthermore, while mitochondrial biogenesis in cumulus cells was induced by maternal diabetes, their metabolic function was disrupted as evidenced by lower ATP and citrate levels. Moreover, we present evidence suggesting that the mitochondrial impairments induced by maternal diabetes, at least in part, lead to cumulus cell apoptosis through the release of cytochrome c. Together the deleterious effects on cumulus cells may disrupt trophic and signaling interactions with the oocyte, contributing to oocyte incompetence and thus poor pregnancy outcomes in diabetic females

    Rule-Based Cell Systems Model of Aging using Feedback Loop Motifs Mediated by Stress Responses

    Get PDF
    Investigating the complex systems dynamics of the aging process requires integration of a broad range of cellular processes describing damage and functional decline co-existing with adaptive and protective regulatory mechanisms. We evolve an integrated generic cell network to represent the connectivity of key cellular mechanisms structured into positive and negative feedback loop motifs centrally important for aging. The conceptual network is casted into a fuzzy-logic, hybrid-intelligent framework based on interaction rules assembled from a priori knowledge. Based upon a classical homeostatic representation of cellular energy metabolism, we first demonstrate how positive-feedback loops accelerate damage and decline consistent with a vicious cycle. This model is iteratively extended towards an adaptive response model by incorporating protective negative-feedback loop circuits. Time-lapse simulations of the adaptive response model uncover how transcriptional and translational changes, mediated by stress sensors NF-ΞΊB and mTOR, counteract accumulating damage and dysfunction by modulating mitochondrial respiration, metabolic fluxes, biosynthesis, and autophagy, crucial for cellular survival. The model allows consideration of lifespan optimization scenarios with respect to fitness criteria using a sensitivity analysis. Our work establishes a novel extendable and scalable computational approach capable to connect tractable molecular mechanisms with cellular network dynamics underlying the emerging aging phenotype

    Climate change challenges, plant science solutions

    Get PDF
    Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community
    • …
    corecore