1,417 research outputs found

    Experimental Research of the Diffraction and Vavilov-Cherenkov Radiation Generation in a Teflon Target

    Full text link
    Geometry of Vavilov-Cherekov (VChR) radiation when an electron moves close to a dielectric target is in analogy to diffraction radiation (DR) geometry. In this case we may expect DR generation from the upstream face of the target besides that VChR. The joint observation of these booth types of radiation is very interesting from the pseudo-photon viewpoint, which is applicable for relativistic electrons. Unexpected results obtained in our experiment insist on reflection about nature both DR and VChR. The experiment was performed on the relativistic electron beam of the microtron of Tomsk Polytechnic University.Comment: This article will be published in Journal of Physic

    “Shadowing” of the electromagnetic field of relativistic charged particles

    No full text
    VIII International Symposium Radiation from Relativistic Electrons in Periodic Structures (RREPS-09), Zvenigorod, Russia, Sept. 7-11, 2009International audienceIn radiation processes such as a transition radiation, diffraction radiation, etc. based on relativistic electrons passing through or near an opaque screen, the electron self-field is partly shadowed after the screen over a distance of the order of the formation length γ2λ. This effect has been investigated on coherent diffraction radiation (DR) by electron bunches. Absorbing and conductive half-plane screens were placed at various distances L before a standard DR source (inclined half-plane mirror). The radiation intensity was reduced when the screen was at small L and on the same side as the mirror. No reduction was observed when the screen was on the opposite side. It is worth noting that absorbing and conductive half-plane screens produce the same shadowing effect. The shadowing effect is responsible for a bound on the intensity of Smith-Purcell radiation

    Electromagnetic field features at interaction of relativistic electron with matter

    Get PDF
    The features of electromagnetic field of relativistic electrons passing through a hole in an absorbing screen as a function of the distance from the screen in the range of radiation formation length were investigated for the transversal and longitudinal field components. The analysis of the obtained results allows approving the existence of a semi-bare electron with a particularly deprived Coulomb field, which turns into the stable state of the usual electron at the distance of radiation formation length

    Experimental test of the shadowing effect in Smith-Purcell radiation

    Get PDF
    The observation of a shadowing effect of a relativistic electron Coulomb field for the Smith-Purcell radiation generation is presented in this paper. For this purpose the surface current from the closest surface of grating element to the electron beam was measured for a downstream one shadowed by upstream element. The experimental results showed that shadowing effect for Smith-Purcell radiation depends on grating geometry

    Characteristics of Smith-Purcell radiation in millimeter wavelength region

    Get PDF
    Investigations of the Smith-Purcell radiation (SPR) were began with non-relativistic electron beams with some unexpected experimental results. Further the experimental investigations were performed with relativistic electron beams for application to beam diagnostics. Large discrepancy between different theoretical models significantly increases the role of experimental studies of this phenomenon. In this report we present some problems and features of experimental investigations of SPR in millimeter wavelength region. The problems of prewave zone and coherent effects are considered. The shadowing effect, focusing of radiation using a parabolic SPR target and effect of inclination of target strips were investigated with moderately relativistic electron beam
    corecore