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Abstract. Investigations of the Smith-Purcell radiation (SPR) were began with non-relativistic 

electron beams with some unexpected experimental results. Further the experimental 

investigations were performed with relativistic electron beams for application to beam 

diagnostics. Large discrepancy between different theoretical models significantly increases the 

role of experimental studies of this phenomenon. In this report we present some problems and 

features of experimental investigations of SPR in millimeter wavelength region.  The problems 

of prewave zone and coherent effects are considered. The shadowing effect, focusing of 

radiation using a parabolic SPR target and effect of inclination of target strips were 

investigated with moderately relativistic electron beam. 

1. Introduction 

The incoherent SPR arising when a charged particle passes over a periodic structure was observed for 

the first time in 1953 [1]. In view of a target periodicity the SPR will be monochromatic, i.e., there 

exists a stiff correlation between its wavelengths and the direction of radiation (the so-called Smith-

Purcell dispersion relationship from [1]): 

1
cos ,

d

k




 
  

 
 

where λ is the radiation wavelength, k is the diffraction order, d is the target period, β is the electron 

speed to that of light ratio, and θ is the observation angle (figure 1). Figure 2 shows the dependence of 

relation / d  on observation angle for different k and 1  . 

 Very exotic results have been obtained in experiment [2]. In this work using the beam of electron 

microscope, the fourth order was observed in dependence of infrared radiation intensity on the beam 

current. Unfortunately this effect was not confirmed yet.   

 In recent experiments [3, 4], the possibility of creating a monochromatic radiation source of the 

THz range on the basis of the Smith-Purcell radiation (SPR) has been demonstrated. The SPR from 

low relativistic electrons is also used in orotrons. The dispersion relationship is very useful for using 

of a coherent SPR (CSPR) in non-invasive beam diagnostics, namely for bunch length measurements 
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[5]. For the non-relativistic electron energies ( 100 keVeE  ), the approach developed by van den 

Berg [6, 7] ensures a reasonable agreement with experiment [8, 9]. 
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Figure 1. Designation of variables 

parameters.  

 Figure 2. Dependence of relation / d  on 

observation angle for different k. 

 

In experiment [10], the possibility of applying the SPR of high relativistic electrons as a 

spontaneous radiation mechanism for a free-electron laser has been investigated. However until now 

no conventional model to calculate the characteristics of the SPR from high relativistic electrons is 

available. 

 In [11] the different models for SPR characteristics calculation were theoretically compared for 

high relativistic electrons:  

a) resonant diffraction radiation (RDR) model. This model is used for gratings consisting of infinitely 

thin perfect conducting strips separated by vacuum gaps, including inclined strips [12]; 

b) surface current (SC) model (the SPR is considered as a radiation generated by the current induced 

by the field of a particle moving in vacuum on a perfect conducting periodic surface);  

c) Van den Berg's (VdB) model (applicable for volume gratings). 

There was shown that the predictions of most models differ by approx. 2 orders of magnitude for 

the electron energy 20 MeV [13] and by several orders for the electron energies eE = 855 MeV [14]. 

The available experimental results do not provide an ultimate conclusion on the validity of one of 

these models. 

We would like in this paper to take attention on the some features which take place during the 

experimental investigations of SPR in millimeter and sub-millimeter wavelength region. 

2. Prewave zone effect 

This effect takes place at a small distance R between a target and detector. In this case a target size 

contribution distorts the angular distribution of radiation, which is usually considered theoretically in a 

far field zone. This is well-known effect for a transition radiation (TR) [15], that appears when 
2R   , where   is the Lorenz-factor of electrons and   is the investigated wavelength of TR. 

However, it is not obvious to the SPR. The detailed analysis of the prewave zone effect for SPR was 

done in [11]. We may show that this effect for transversal size of SPR target H   appears when 
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   , where L is a longitudinal size of target, d is period of 

target and 21 1 /   . 

 For example: 

 a) for L = 200 mm; 12; / 2    ; d = 12 mm we obtain far field zone condition R > 5 m, 

b) for L = 20 mm; 2000; / 2    ; d = 800 nm (KEK ATF conditions, optical region)  

R > 4 m. 

 It is clear, that it is problem (sometimes impossible) to provide measurements in far field zone. To 

exclude the prewave zone effect a parabolic telescope (see figure 3) with detector placed in focus of 

parabolic mirror may be used for the spectral and angular distributions measurement. This method was 

proposed and tested in [16] and gives the same angular distribution as in the far field zone. 
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Figure 3. Scheme for suppression of the prewave zone effect. 

3. Coherency factor 

Another problem is the coherent effect of radiation of a bunched electron beam. The coherent radiation 

intensity of electron bunch may be presented as 2

coh incoheW N f W   . Here 1eN  is a bunch 

population, Wincoh is the incoherent radiation of electrons in bunch and f is the geometrical form-factor 

of a bunch. For SPR the longitudinal form-factor f  gives contribution only, if 

2

2

h

e







   (see 

[31]), where    defines a transversal size of bunch and h is impact-parameter. For Gaussian 

approximation of longitudinal distribution of electron in bunch

2

2

f f e

 

 

 
  

   , where   defines a 

longitudinal size of bunch.  
 

 

 

 

Figure 4. SPR polar distributions, 

calculated using surface current model for 

incoherent radiation. 

 Figure 5. SPR polar distributions, calculated 

using surface current model for coherent 

radiation. 
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 In figures 4 and 5 are presented the sample of SPR polar distributions, calculated using surface 

current model for incoherent and coherent radiation correspondently for next conditions: 

L = 160 mm; d = 8 mm; strip width is equal 4 mm; impact-parameter h = 10 mm; 2 mm  ;  

Ne = 10
8
. 

So, form-factors are crucial in the formation of the spectral and angular characteristics of SPR. 

4. Main SPR properties, observed using the electron beam of Tomsk Polytechnic University 

microtron 

The experiment was performed on the extracted electron beam of microtron PTI TPU with the 

following parameters: electron energy – 6.1 MeV; macro-pulse duration 4 s ; the macro-pulse 

frequency 1 8  Hz; the characteristic bunch length in the Gaussian approximation 2   mm; the 

bunch population Ne = 10
8
, the number of bunches in macro-pulse – 10

4
, the cross-section of the 

extracted beam 4 2 mm
2
, the angular divergence of the extracted beam – 0.08 rad. In figure 6 is 

presented the dependence of squared form-factor on the wavelength for these conditions.  
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Figure 6. Dependence of squared form-factor on the wavelength. 

 

Under these conditions for 9   mm radiation of electron bunch is coherent. We may expect the 

radiation for 9  , but with a small intensity, which results large relative errors. Because of the 

coherency the radiation intensity is increased by Ne times (i.e., for the specified bunch population it is 

by 8 orders), making it available for the measurement using existing detectors operating at a room 

temperature. 

For radiation registration, we used broadband detector DP-21M, manufactured in Semi-conductive 

Devices Research Institute (Tomsk, Russia) with parameters: efficiency in the wavelength region 

3 16  mm is estimated to be constant to a 15%  accuracy. The detector sensitivity is 0.3 

V/mWatt. To suppress the accelerator RF system background the beyond cutoff waveguide with 

diameter 10 mm was mounted on the detector, which cuts a radiation having a wavelength 17   

mm. Thus, the spectral range of the measurement is 9 17   mm. 

The angular characteristics of the radiation were measured using the parabolic telescope (figure 3), 

which provides the measurements in terms of far field zone. The angular resolution of a telescope is 

0.035 radians. 

4.1. Comparison of different theoretical models of SPR 

There are few theoretical models for calculate the SPR characteristics for the different grating profiles. 

We consider here three models: van den Berg's model (vDB) [6] (applicable for volume gratings), 

surface current model (SC) [17, 18] (the SPR is considered as a radiation generated by the current 

induced by the field of a particle moving in vacuum on a perfect conducting periodic surface), and 

resonant diffraction radiation model (RDR) [19] (for gratings consisting of infinitely thin perfect 

conducting strips separated by vacuum gaps). For comparison we use calculations and experimental 
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results from [20] (figure 7). We can see in figure 7 a large discrepancy between radiation yields 

obtained using these three models. Comparing the absolute experimental data with the theoretical 

predictions [20] ascertain that the RDR and SC models. 
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Figure 7. Angular distribution of the SPR 

intensity for a flat grating according to the RDR 

model (solid line), surface current model (a 

dashed curve) and for van den Berg's model 

(dash-dotted line). The point is the absolute 

experimental measurement 

 Figure 8. Polar angular distribution of measured 

coherent SPR. Dotted line is the experimental 

results. Solid line is calculation for far field 

zone using surface current model, normalized 

on the experimental results.  

4.2. Angular dependence of coherent SPR 

The polar angular distribution of measured coherent SPR (CSPR) from the flat target with parameters: 

L = 200 mm, d = 12 mm, strip width – 6 mm, impact-parameter h = 10 mm, is shown in figure 8.  

Solid line depicts the calculation of CSPR intensity normalized on the experimental results, for far 

field zone using surface current model for bunch length 2   mm and for the same target 

parameters. 

4.3. SPR focusing 

Here we describe the possibility of CSPR focusing using a parabolic grating (figure 9). In this case we 

can obtain the focusing effect in a pre-wave zone without additional optic devices. 
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Figure 9. Scheme of CSPR focusing using a parabolic grating 
 

In figure 10 is shown the dependence of radiation intensity on the distance between target and detector 

where we can see the maximum of radiation intensity in the focus of parabola. The comparison of 
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measured azimuthally orientation distributions of CSPR yield from polar-focusing (red curve) and flat 

(blue curve) gratings in corresponding conditions is shown in figure 11. 
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Figure 10. Experimentally measured 

distribution of CSPR yield vs. distance 

from the polar-focusing grating to 

detector. 

 Figure 11. The comparison of experimentally 

measured azimuthally (at angle  ) orientation 

distributions of CSPR yield from polar-focusing 

(red curve) and flat (blue curve) gratings in 

corresponding conditions. 
 

Here we can see that the focusing effect is limited due to increase of the impact-parameter in the 

center of parabolic target. 

4.4. Shadowing effect in SPR 

The shadowing of electron electromagnetic field in case of diffraction and transition radiation was 

considered theoretically and experimentally in number of papers [21] – [25]. In Pseudo-photon 

approach for ultra-relativistic electron the properties of electron field are very close to the properties of 

real photons. There is a region downstream to a conductive or absorbing screen where the Coulomb 

field is partly missing. In terms of paper [22] this effect is named “shadow effect”, and the term "semi-

bare electron" has been introduced in [26, 27] to describe the similar effect in the framework of 

quantum electrodynamics for an electron scattered at a large angle.   
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Figure 12. Active strip with 

surface current sensor. 

 Figure 13. Scheme of shadowing measurements. 
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In [22] the shadowing effect for a Smith-Purcell radiation (SPR) was predicted by Prof. X. Artru. We 

apply in [28] the well-known technique, which is used in strip-line beam position monitors [29].  This 

sensor registered a surface current component perpendicular to the slit (see figure 12). The sensor was 

inserted in the element typical for a SPR target element (active element).   

 To be sure that we measure the concerned amount, we had measured the dependence of the surface 

current on impact-parameter (dots in figure 14). The solid line in figure 14 is the fit to experimental 

data. 
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Figure 14. Dependence on impact-

parameter. Dots are the experimental 

points. Solid line is fit shown 

approximation. 

 Figure 15. Dependence of surface current on 

the surface of active element on impact-

parameter of the passive elements. 

 

For measuring the shadowing effect we had inserted three grating elements of the same geometry but 

without a sensor (passive elements) upstream to the active element (see figure 13). In this geometry 

the active grating element corresponds to the fourth element in SPR target with width of element 9 

mm and period 18 mm. The dependence of surface current on the surface of active element on impact-

parameter of the passive elements (figure 15) shows the shadowing effect is equal 64%. This effect is 

of considerable importance to be taken into account in a calculation of SPR. 

4.5. Effect of SPR target inclination (conical effect) 

This item is devoted to the so named conical effect, predicted theoretically in [30]. According this 

prediction the maximum of azimuthal ( ) and polar ( ) distribution of SPR depends on an inclination 

angle   of a SPR target in respect to an electron beam (figure 16).  
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Figure 16. Designation of variable 

parameters in the experiment. 

 Figure 17. The dependence of radiation intensity 

on the polar angle   for 0   and 0  . 
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The dependence of radiation intensity on the polar angle   for 0   and 0   in designation of 

variable parameters in the experiment shown in figure 16 is shown in figure 17. In figure 18 are shown 

the azimuthal dependences of SPR intensity in the point o110  for 0  , o3  and o5 . The 

dependences are normalized on the maximum of radiation intensity. 
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Figure 18. Azimuthal dependences of 

SPR intensity for 0   (circles), 
o3  (triangles), o5  (squares). 

  

Figure 19. Dependence of maximum position 

max  on the orientation angle   of the target in 

respect to the beam direction. Line is the linear 

fit. 

 

Using these results we can build the dependence of maximum position max  on the orientation angle 

  of the target in respect to the beam direction (figure 19). In figure 19 we can see the strong 

dependence of angular peak position max  on the orientation angle   of the target. 

 The effect of azimuthal inclination of radiation due to rotation of target may be used for direct 

noninvasive measurement of a beam direction at a given point of the beam trajectory. 

5. Conclusion 

The existing theoretical calculations of SPR properties show the large discrepancy between them and 

can be used for estimations  only (except kinematical calculations), and should be tested 

experimentally. Prewave zone effect should be estimated, for each geometry in angular and spectral 

measurements. The coherent properties of radiation of a bunched electron beam may be used for 

bunch length measurement. A parabolic SPR target may be used for the focusing of SPR. The 

shadowing effect should be taken into account in theoretical estimations. The effect of azimuthal 

inclination of radiation due to rotation of target may be used for direct noninvasive measurement of a 

beam direction. 
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