67 research outputs found
Outer-Sphere Contributions to the Electronic Structure of Type Zero Copper Proteins
Bioinorganic canon states that active-site
thiolate coordination promotes rapid electron transfer (ET)
to and from type 1 copper proteins. In recent work, we have
found that copper ET sites in proteins also can be constructed
without thiolate ligation (called “type zero” sites). Here we
report multifrequency electron paramagnetic resonance
(EPR), magnetic circular dichroism (MCD), and nuclear
magnetic resonance (NMR) spectroscopic data together with
density functional theory (DFT) and spectroscopy-oriented
configuration interaction (SORCI) calculations for type zero Pseudomonas aeruginosa azurin variants. Wild-type (type 1) and type
zero copper centers experience virtually identical ligand fields. Moreover, O-donor covalency is enhanced in type zero centers
relative that in the C112D (type 2) protein. At the same time, N-donor covalency is reduced in a similar fashion to type 1
centers. QM/MM and SORCI calculations show that the electronic structures of type zero and type 2 are intimately linked to the
orientation and coordination mode of the carboxylate ligand, which in turn is influenced by outer-sphere hydrogen bonding
- …