790 research outputs found

    Low-lying isovector monopole resonances

    Full text link
    The mass difference between the even-even isobaric nuclei having the valence nucleons on the same degenerate level is attributed to a Josephson-type interaction between pairs of protons and pairs of neutrons. This interaction can be understood as an isospin symmetry-breaking mean field for a four-particle interaction separable in the two particles-two holes channel. The strength of this mean field is estimated within an o(5) algebraic model, by using the experimental value of the inertial parameter for the collective isorotation induced by the breaking of the isospin symmetry. In superfluid nuclei, the presumed interaction between the proton and neutron condensates leads to coupled oscillations of the BCS gauge angles, which should appear in the excitation spectrum as low-lying isovector monopole resonances.Comment: 16 pages/LaTex + 1 PostScript figure; related to cond-mat/9904242, math-ph/000500

    Number of Spin II States of Identical Particles

    Full text link
    In this paper we study the enumeration of number (denoted as DI{D_I}) of spin II states for fermions in a single-jj shell and bosons with spin ll. We show that DID_I can be enumerated by the reduction from SU(n+1)(n+1) to SO(3). New regularities of DID_I are discerned.Comment: 3 pages, no figures. to be publishe

    JJ-pairing interaction, number of states, and nine-jj sum rules of four identical particles

    Full text link
    In this paper we study JJ-pairing Hamiltonian and find that the sum of eigenvalues of spin II states equals sum of norm matrix elements within the pair basis for four identical particles such as four fermions in a single-jj shell or four bosons with spin ll. We relate number of states to sum rules of nine-jj coefficients. We obtained sum rules for nine-jj coefficients and and summing over (1) even JJ and KK, (2) even JJ and odd KK, (3) odd JJ and odd KK, and (4) both even and odd J,KJ,K, where jj is a half integer and ll is an integer.Comment: 6 pages, no figure, updated version, to be published. Physical Review C, in pres

    Cluster sum rules for three-body systems with angular-momentum dependent interactions

    Full text link
    We derive general expressions for non-energy weighted and energy-weighted cluster sum rules for systems of three charged particles. The interferences between pairs of particles are found to play a substantial role. The energy-weighted sum rule is usually determined by the kinetic energy operator, but we demonstrate that it has similar additional contributions from the angular momentum and parity dependence of two- and three-body potentials frequently used in three-body calculations. The importance of the different contributions is illustrated with the dipole excitations in 6^6He. The results are compared with the available experimental data.Comment: 11 pages, 3 figures, 2 table

    Spin-driven spatial symmetry breaking of spinor condensates in a double-well

    Full text link
    The properties of an F=1 spinor Bose-Einstein condensate trapped in a double-well potential are discussed using both a mean-field two-mode approach and a simplified two-site Bose-Hubbard Hamiltonian. We focus in the region of phase space in which spin effects lead to a symmetry breaking of the system, favoring the spatial localization of the condensate in one well. To model this transition we derive, using perturbation theory, an effective Hamiltonian that describes N/2 spin singlets confined in a double-well potential.Comment: 12 pages, 5 figure

    Configuration mixing calculation for complete low-lying spectra with the mean-field Hamiltonian

    Get PDF
    We propose a new theoretical approach to ground and low-energy excited states of nuclei extending the nuclear mean-field theory. It consists of three steps: stochastic preparation of many Slater determinants, the parity and angular momentum projection, and diagonalization of the generalized eigenvalue problems. The Slater determinants are constructed in the three-dimensional Cartesian coordinate representation capable of describing arbitrary shape of nuclei. We examine feasibility and usefulness of the method by applying the method with the BKN interaction to light 4N-nuclei, 12C, 16O, and 20Ne. We discuss difficulties of keeping linear independence for basis states projected on good parity and angular momentum and present a possible prescription.Comment: 12 pages, revtex

    Equivalent Photon Approach to Simultaneous Excitation in Heavy Ion Collision

    Get PDF
    We apply the Equivalent Photon Approximation to calculate cross sections for the simultaneous excitation of two heavy ions in relativistic collisions. We study especially the excitation of two nuclei to a 1- - state and show that the equations are symmetric with respect to both ions. We also examine the limit in which the excitation energy of one of the nuclei goes to zero, which gives the elastic case. Finally a few remarks about the limits of this approach are made.Comment: 9 pages REVTex, 4 Figures included, see also http://www.phys.washington.edu/~hencken

    On an Alternative Parametrization for the Theory of Complex Spectra

    Full text link
    The purpose of this letter is threefold : (i) to derive, in the framework of a new parametrization, some compact formulas of energy averages for the electrostatic interaction within an (nl)N configuration, (ii) to describe a new generating function for obtaining the number of states with a given spin angular momentum in an (nl)N configuration, and (iii) to report some apparently new sum rules, actually a by-product of (i), for SU(2) > U(1) coupling coefficients.Comment: Published in Physics Letters A 147, 417-422 (1990
    • …
    corecore