6,695 research outputs found

    Conductivity and permittivity of dispersed systems with penetrable particle-host interphase

    Full text link
    A model for the study of the effective quasistatic conductivity and permittivity of dispersed systems with particle-host interphase, within which many-particle polarization and correlation contributions are effectively incorporated, is presented. The structure of the system's components, including the interphase, is taken into account through modelling their low-frequency complex permittivity profiles. The model describes, among other things, a percolation-type behavior of the effective conductivity, accompanied by a considerable increase in the real part of the effective complex permittivity. The percolation threshold location is determined mainly by the thickness of the interphase. The "double" percolation effect is predicted. The results are contrasted with experiment.Comment: 10 pages, 10 figure

    Probability of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips

    Full text link
    We have studied supercurrent-assisted formation of the resistive state in nano-structured Nb and NbN superconducting films after absorption of a single photon. In amorphous narrow NbN strips the probability of the resistive state formation has a pronounced spectral cut-off. The corresponding threshold photon energy decreases with the bias current. Analysis of the experimental data in the framework of the generalized hot-spot model suggests that the quantum yield for near-infrared photons increases faster than the photon nergy. Relaxation of the resistive state depends on the photon energy making the phenomenon feasible for the development of energy resolving single-photon detectors.Comment: 9 pages, 9 figures, submitted to Eur. Phys. Journa

    Graphene spin capacitor for magnetic field sensing

    Full text link
    An analysis of a novel magnetic field sensor based on a graphene spin capacitor is presented. The proposed device consists of graphene nanoribbons on top of an insulator material connected to a ferromagnetic source/drain. The time evolution of spin polarized electrons injected into the capacitor can be used for an accurate determination at room temperature of external magnetic fields. Assuming a spin relaxation time of 100 ns, magnetic fields on the order of 10\sim 10 mOe may be detected at room temperature. The observational accuracy of this device depends on the density of magnetic defects and spin relaxation time that can be achieved.Comment: 6 pages, 3 figure

    Symmetric Diblock Copolymers in Thin Films (I): Phase stability in Self-Consistent Field Calculations and Monte Carlo Simulations

    Full text link
    We investigate the phase behavior of symmetric AB diblock copolymers confined into a thin film. The film boundaries are parallel, impenetrable and attract the A component of the diblock copolymer. Using a self-consistent field technique [M.W. Matsen, J.Chem.Phys. {\bf 106}, 7781 (1997)], we study the ordered phases as a function of incompatibility χ\chi and film thickness in the framework of the Gaussian chain model. For large film thickness and small incompatibility, we find first order transitions between phases with different number of lamellae which are parallel oriented to the film boundaries. At high incompatibility or small film thickness, transitions between parallel oriented and perpendicular oriented lamellae occur. We compare the self-consistent field calculations to Monte Carlo simulations of the bond fluctuation model for chain length N=32. In the simulations we quench several systems from χN=0\chi N=0 to χN=30\chi N=30 and monitor the morphology into which the diblock copolymers assemble. Three film thicknesses are investigated, corresponding to parallel oriented lamellae with 2 and 4 interfaces and a perpendicular oriented morphology. Good agreement between self-consistent field calculations and Monte Carlo simulations is found.Comment: to appear in J.Chem.Phy
    corecore