3,063 research outputs found

    An Effect of Relative Motion on Trajectory Discrimination

    Get PDF
    Psychophysical studies point to the existence of specialized mechanisms sensitive to the relative motion between an object and its background. Such mechanisms would seem ideal for the motion-based segmentation of objects; however, their properties and role in processing the visual scene remain unclear. Here we examine the contribution of relative motion mechanisms to the processing of object trajectory. In a series of four psychophysical experiments we examine systematically the effects of relative direction and speed differences on the perceived trajectory of an object against a moving background. We show that background motion systematically influences the discrimination of object direction. Subjects’ ability to discriminate direction was consistently better for objects moving opposite a translating background than for objects moving in the same direction as the background. This effect was limited to the case of a translating background and did not affect perceived trajectory for more complex background motions associated with self-motion. We interpret these differences as providing support for the role of relative motion mechanisms in the segmentation and representation of object motions that do not occlude the path of an observer’s self-motion

    Different Motion Cues Are Used to Estimate Time-to-arrival for Frontoparallel and Loming Trajectories

    Get PDF
    Estimation of time-to-arrival for moving objects is critical to obstacle interception and avoidance, as well as to timing actions such as reaching and grasping moving objects. The source of motion information that conveys arrival time varies with the trajectory of the object raising the question of whether multiple context-dependent mechanisms are involved in this computation. To address this question we conducted a series of psychophysical studies to measure observers’ performance on time-to-arrival estimation when object trajectory was specified by angular motion (“gap closure” trajectories in the frontoparallel plane), looming (colliding trajectories, TTC) or both (passage courses, TTP). We measured performance of time-to-arrival judgments in the presence of irrelevant motion, in which a perpendicular motion vector was added to the object trajectory. Data were compared to models of expected performance based on the use of different components of optical information. Our results demonstrate that for gap closure, performance depended only on the angular motion, whereas for TTC and TTP, both angular and looming motion affected performance. This dissociation of inputs suggests that gap closures are mediated by a separate mechanism than that used for the detection of time-to-collision and time-to-passage. We show that existing models of TTC and TTP estimation make systematic errors in predicting subject performance, and suggest that a model which weights motion cues by their relative time-to-arrival provides a better account of performance

    Global Flow Impacts Time-to-passage Judgments Based on Local Motion Cues

    Get PDF
    We assessed the effect of the coherence of optic flow on time-to-passage judgments in order to investigate the strategies that observers use when local expansion information is reduced or lacking. In the standard display, we presented a cloud of dots whose image expanded consistent with constant observer motion. The dots themselves, however, did not expand and were thus devoid of object expansion cues. Only the separations between the dots expanded. Subjects had to judge which of two colored target dots, presented at different simulated depths and lateral displacements would pass them first. Image velocities of the target dots were chosen so as to correlate with time-to-passage only some of the time. When optic flow was mainly incoherent, subjects’ responses were biased and relied on image velocities rather than on global flow analysis. However, the bias induced by misleading image velocity cues diminished as a function of the coherence of the optic flow. We discuss the results in the context of a global tau mechanism and settle a debate whether local expansion cues or optic flow analysis are the basis for time-to-passage estimation

    Integration Mechanisms for Heading Perception

    Get PDF
    Previous studies of heading perception suggest that human observers employ spatiotemporal pooling to accommodate noise in optic flow stimuli. Here, we investigated how spatial and temporal integration mechanisms are used for judgments of heading through a psychophysical experiment involving three different types of noise. Furthermore, we developed two ideal observer models to study the components of the spatial information used by observers when performing the heading task. In the psychophysical experiment, we applied three types of direction noise to optic flow stimuli to differentiate the involvement of spatial and temporal integration mechanisms. The results indicate that temporal integration mechanisms play a role in heading perception, though their contribution is weaker than that of the spatial integration mechanisms. To elucidate how observers process spatial information to extract heading from a noisy optic flow field, we compared psychophysical performance in response to random-walk direction noise with that of two ideal observer models (IOMs). One model relied on 2D screen-projected flow information (2D-IOM), while the other used environmental, i.e., 3D, flow information (3D-IOM). The results suggest that human observers compensate for the loss of information during the 2D retinal projection of the visual scene for modest amounts of noise. This suggests the likelihood of a 3D reconstruction during heading perception, which breaks down under extreme levels of noise

    Psychophysical evidence for a radial motion bias in complex motion discrimination

    Get PDF
    AbstractIn a graded motion pattern task we measured observers’ ability to discriminate small changes in the global direction of complex motion patterns. Performance varied systematically as a function of the test motion (radial, circular, or spiral) with thresholds for radial motions significantly lower than for circular motions. Thresholds for spiral motions were intermediate. In all cases thresholds were lower than for direction discrimination using planar motions and increased with removal of the radial speed gradient, consistent with the use of motion pattern specific mechanisms that integrate motion along complex trajectories. The radial motion bias and preference for speed gradients observed here is similar to the preference for expanding motions and speed gradients reported in cortical area MSTd, and may suggest the presence of comparable neural mechanisms in the human visual motion system

    Differential Cortical Activation During the Perception of Moving Objects Along Different Trajectories

    Get PDF
    Detection of 3D object-motion trajectories depends on the integration of two distinct visual cues: translational displacement and looming. Electrophysiological studies have identified distinct neuronal populations, whose activity depends on the precise motion cues present in the stimulus. This distinction, however, has been less clear in humans, and it is confounded by differences in the behavioral task being performed. We analyzed whole-brain fMRI, while subjects performed a common time-to-arrival task for objects moving along three trajectories: moving directly towards the observer (collision course), with trajectories parallel to the line of sight (passage course), and with trajectories perpendicular to the line of sight (gap closure). We found that there was substantial overlap in the pattern of activation associated with each of the three tasks, with differences among conditions limited to the human motion area (hMT+), which showed greater activation extent in the gap closure condition than for either collision or passage courses. These results support a common substrate for temporal judgments of an object’s time-to-arrival, wherein the special cases of object motion directly toward, or perpendicular to, the observer represent two extremes within the broader continuum of 3D passage trajectories relative to the observer

    Acute tubular necrosis is characterized by activation of the alternative pathway of complement

    Get PDF
    Acute tubular necrosis is characterized by activation of the alternative pathway of complement.BackgroundStudies in animal models have shown that the alternative pathway of complement is activated in the kidney after ischemia/reperfusion. In addition, mice deficient in complement factor B, a necessary component of the alternative pathway, are protected from ischemic acute renal failure. The purpose of this study was to determine whether alternative pathway activation also occurs during the development of ischemic acute tubular necrosis in the human kidney.MethodsBiopsies were identified from nine patients with morphologically normal kidneys and seven patients with evidence of acute tubular necrosis by light microscopy. Immunofluorescence microscopy was used to quantify and localize the complement activation products C3d and C4d. The results were correlated with available clinical data.ResultsSimilar to mice, small amounts of activated C3d were present along the tubular basement membrane in normal kidneys. However, kidneys from patients with acute tubular necrosis had C3d complement deposition along a significantly greater number of tubules, and many of the tubules were completely circumscribed. In contrast, C4d was not detectable, indicating that complement activation occurred primarily via alternative pathway activation.ConclusionComplement activation occurs in human ischemic acute tubular necrosis. As in rodents, complement activation along the tubular basement membrane after ischemia appears to occur principally via the alternative complement pathway. Because of this, an inhibitor of the alternative pathway might limit complement activation and inflammation after ischemia/reperfusion, thereby protecting the kidney from ischemic acute renal failure

    Inflammation in benign prostate tissue and prostate cancer in the finasteride arm of the Prostate Cancer Prevention Trial

    Get PDF
    BACKGROUND: A previous analysis of the placebo arm of the Prostate Cancer Prevention Trial (PCPT) reported 82% overall prevalence of intraprostatic inflammation and identified a link between inflammation and higher-grade prostate cancer and serum PSA. Here we studied these associations in the PCPT finasteride arm. METHODS: Prostate cancer cases (N=197) detected either on a clinically indicated biopsy or on protocol-directed end-of-study biopsy, and frequency-matched controls (N=248) with no cancer on an end-of-study biopsy were sampled from the finasteride arm. Inflammation in benign prostate tissue was visually assessed using digital images of H&E stained sections. Logistic regression was used for statistical analysis. RESULTS: In the finasteride arm, 91.6% of prostate cancer cases and 92.4% of controls had at least one biopsy core with inflammation in benign areas; p < 0.001 for difference compared to placebo arm. Overall, the odds of prostate cancer did not differ by prevalence (OR=0.90, 95% CI 0.44-1.84) or extent (P-trend=0.68) of inflammation. Inflammation was not associated with higher-grade disease (prevalence: OR=1.07, 95% CI 0.43-2.69). Furthermore, mean PSA concentration did not differ by the prevalence or extent of inflammationin either cases or controls. CONCLUSION: The prevalence of intraprostatic inflammation was higher in the finasteride than placebo arm of the PCPT, with no association with higher-grade prostate cancer. IMPACT: Finasteride may attenuate the association between inflammation and higher-grade prostate cancer. Moreover, the missing link between intraprostatic inflammation and PSA suggests that finasteride may reduce inflammation-associated PSA elevation

    Rapid ecosystem-scale consequences of acute deoxygenation on a Caribbean coral reef

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, M. D., Scott, J. J., Leray, M., Lucey, N., Bravo, L. M. R., Wied, W. L., & Altieri, A. H. Rapid ecosystem-scale consequences of acute deoxygenation on a Caribbean coral reef. Nature Communications, 12(1), (2021): 4522, https://doi.org/10.1038/s41467-021-24777-3.Loss of oxygen in the global ocean is accelerating due to climate change and eutrophication, but how acute deoxygenation events affect tropical marine ecosystems remains poorly understood. Here we integrate analyses of coral reef benthic communities with microbial community sequencing to show how a deoxygenation event rapidly altered benthic community composition and microbial assemblages in a shallow tropical reef ecosystem. Conditions associated with the event precipitated coral bleaching and mass mortality, causing a 50% loss of live coral and a shift in the benthic community that persisted a year later. Conversely, the unique taxonomic and functional profile of hypoxia-associated microbes rapidly reverted to a normoxic assemblage one month after the event. The decoupling of ecological trajectories among these major functional groups following an acute event emphasizes the need to incorporate deoxygenation as an emerging stressor into coral reef research and management plans to combat escalating threats to reef persistence.M.D.J. was funded by postdoctoral fellow awards from the Smithsonian Institution’s Marine Global Earth Observatory (MarineGEO) and the Smithsonian Tropical Research Institute (STRI); M.L. and N.L. were funded by postdoctoral support from the STRI Office of Fellowships. J.J.S. was funded by a grant from the Gordon and Betty Moore Foundation awarded to STRI and UC Davis (doi:10.37807/GBMF5603). L.M.R.B., W.L.W., and A.H.A. were supported by MarineGEO, a private funder, and STRI funds to A.H.A. Many of the computations were conducted on the Smithsonian High-Performance Cluster (SI/HPC), Smithsonian Institution (doi:10.25572/SIHPC). We thank Rachel Collin for facilities support at the Bocas del Toro Research Station, Plinio Gondola and the research station staff for logistical support, Roman Barco for insight into the functional analyses, Sherly Castro for informative feedback, and Mike Fox for assistance with community analyses. Research permits were provided by the Autoridad Nacional del Ambiente de PanamĂĄ. This paper is the result of research funded by the National Oceanic and Atmospheric Administration’s National Centers for Coastal Ocean Science Competitive Research Program under award NA18NOS4780170 to A.H.A. and M.D.J. through the University of Florida. This is contribution 257 from the Coastal Hypoxia Research Program and 86 from the Smithsonian’s MarineGEO and Tennenbaum Marine Observatories Network
    • 

    corecore