292 research outputs found

    Novel PBAT-Based Biocomposites Reinforced with Bioresorbable Phosphate Glass Microparticles

    Get PDF
    Biocomposites based on poly(butylene adipate terephthalate) (PBAT) and reinforced with micro-particles of inorganic biodegradable phosphate glass (PG) at 2, 10, and 40 wt% are prepared and characterized from a mechanical and morphological point of view. Scanning electron microscope (SEM) images show a good dispersion of the PG micro-grains, even at high concentrations, in the PBAT matrix, resulting in homogeneous composites. Tensile and dynamic-mechanical tests, respectively, indicate that Young's and storage moduli increase with PG concentration. The reinforcement of PBAT aims at modifying and tailoring the mechanical and viscoelastic properties of the material to expand its application field especially in the food and agricultural packaging sector, thanks to the similarity of PBAT performance with polyethylene

    A \u201cnoisy\u201d electrical stimulation protocol favors muscle regeneration in vitro through release of endogenous ATP

    Get PDF
    An in vitro system of electrical stimulation was used to explore whether an innovative \u201cnoisy\u201d stimulation protocol derived from human electromyographic recordings (EMGstim)could promote muscle regeneration. EMGstim was delivered to cultured mouse myofibers isolated from Flexor Digitorum Brevis, preserving their satellite cells. In response to EMGstim, immunostaining for the myogenic regulatory factor myogenin, revealed an increased percentage of elongated myogenin-positive cells surrounding the myofibers. Conditioned medium collected from EMGstim-treated cell cultures, promoted satellite cells differentiation in unstimulated myofiber cell cultures, suggesting that extracellular soluble factors could mediate the process. Interestingly, the myogenic effect of EMGstim was mimicked by exogenously applied ATP (0.1 \u3bcM), reduced by the ATP diphosphohydrolase apyrase and prevented by blocking endogenous ATP release with carbenoxolone. In conclusion, our results show that \u201cnoisy\u201d electrical stimulations favor muscle progenitor cell differentiation most likely via the release of endogenous ATP from contracting myofibres. Our data also suggest that \u201cnoisy\u201d stimulation protocols could be potentially more efficient than regular stimulations to promote in vivo muscle regeneration after traumatic injury or in neuropathological diseases

    Design of mechanical properties of poly(butylene-adipate-terephthalate) reinforced with Zein-TiO2 complex

    Get PDF
    The aim of this work was to realize and mechanically characterize composites based on poly(butyleneadipate-terephthalate) (PBAT) filled with micrometric particles of zein-TiO2 complex (ZTC) at different concentrations. Specimens model 1BA were obtained by injection molding and subjected to a uniaxial tensile test (UTT). The addition of the ZTC proved to have a reinforcing effect on the matrix, an increase in both Young’s modulus (E) and yield stress (σy) being observed. The mechanical properties were modeled applying Kerner’s and PukĂĄnszky’s models, obtaining a good correspondence between theoretical experimental values and good matrix-filler interfacial interaction, respectively. Microscopical analysis revealed a good dispersion of the filler within the matrix

    Use of biomarkers in ongoing research protocols on alzheimer’s disease

    Get PDF
    The present study aimed to describe and discuss the state of the art of biomarker use in ongoing Alzheimer’s disease (AD) research. A review of 222 ongoing phase 1, 2, 3, and 4 protocols registered in the clinicaltrials.gov database was performed. All the trials (i) enrolling subjects with clinical disturbances and/or preclinical diagnoses falling within the AD continuum; and (ii) testing the efficacy and/or safety/tolerability of a therapeutic intervention, were analyzed. The use of biomarkers of amyloid deposition, tau pathology, and neurodegeneration among the eligibility criteria and/or study outcomes was assessed. Overall, 58.2% of ongoing interventional studies on AD adopt candidate biomarkers. They are mostly adopted by studies at the preliminary stages of the drug development process to explore the safety profile of novel therapies, and to provide evidence of target engagement and disease-modifying properties. The biologically supported selection of participants is mostly based on biomarkers of amyloid deposition, whereas the use of biomarkers as study outcomes mostly relies on markers of neurodegeneration. Biomarkers play an important role in the design and conduction of research protocols targeting AD. Nevertheless, their clinical validity, utility, and cost-effectiveness in the “real world” remain to be clarified

    A systematic review of the biological processes involved in deep-brain stimulation for parkinson’s disease: A focus on the potential disease-modifying effects

    Get PDF
    Deep-Brain Stimulation (DBS) is an important treatment option for the management of Parkinson’s disease (PD) and is a common symptomatic treatment. However, an increasing number of studies have examined the biological processes to assess if DBS can also modify the natural history of PD by acting on its pathophysiological mechanisms. Relevant literature published up to November 2020 was systematically searched on databases such as PubMed, ISI Web of Knowledge, Academic Search Index, and Science Citation Index. The following predefined inclusion criteria were applied to the full-text versions of the selected articles: I) recruiting and monitoring of PD subjects that were previously treated with DBS and ii) investigating the electrophysiological, biochemical, epigenetic, or neuroimaging effects of DBS. Studies focusing exclusively on motor and clinical changes were excluded. Reviews, case reports, studies on animal models, and computational studies were also not considered. Out of 2,960 records screened, 43 studies met the inclusion criteria. Only three studies described a potential disease-modifying effect of DBS. However, a wide heterogeneity was observed in the investigated biomarkers, and the design and methodological issues of several studies limited their ability to find potential disease-modifying features. Specifically, 60.4% of the trials followed-up subjects for no more than 1 year from the surgical intervention, and 67.4% observed patients with PD only once after DBS. Moreover, 64.2% of the studies enrolled late-stage PD patients. Most of the studies (88.4%) reported that DBS only had a symptomatic effect, with several of them showing some limitations in the study design and recruitment of patients. Further studies using shared biomarkers are encouraged to assess if and how DBS might affect the progression of PD. Based on the existing preclinical literature, prospective clinical trials examining the course of PD in early-stage patients are needed

    Neuronal Agrin Promotes Proliferation of Primary Human Myoblasts in an Age-Dependent Manner

    Get PDF
    Neuronal agrin, a heparan sulphate proteoglycan secreted by the -motor neurons, promotes the formation and maintenance of the neuromuscular junction by binding to Lrp4 and activating muscle-specific kinase (MuSK). Neuronal agrin also promotes myogenesis by enhancing differentiation and maturation of myotubes, but its effect on proliferating human myoblasts, which are often considered to be unresponsive to agrin, remains unclear. Using primary human myoblasts, we determined that neuronal agrin induced transient dephosphorylation of ERK1/2, while c-Abl, STAT3, and focal adhesion kinase were unresponsive. Gene silencing of Lrp4 and MuSK markedly reduced the BrdU incorporation, suggesting the functional importance of the Lrp4/MuSK complex for myoblast proliferation. Acute and chronic treatments with neuronal agrin increased the proliferation of human myoblasts in old donors, but they did not affect the proliferation of myoblasts in young donors. The C-terminal fragment of agrin which lacks the Lrp4-binding site and cannot activate MuSK had a similar age-dependent effect, indicating that the age-dependent signalling pathways activated by neuronal agrin involve the Lrp4/MuSK receptor complex as well as an Lrp4/MuSK-independent pathway which remained unknown. Collectively, our results highlight an age-dependent role for neuronal agrin in promoting the proliferation of human myoblasts

    Nothing is as it seems: genetic analyses on stranded fin whales unveil the presence of a fin-blue whale hybrid in the Mediterranean Sea (Balaenopteridae)

    Get PDF
    The fin whale Balaenoptera physalus is a large rorqual species occurring worldwide, mainly in temperate and subpolar zones. In contrast to many baleen whales, not all the fin whale populations show the same model of migration. In fact, migratory behaviours of this latter species range from long seasonal migration between high and low latitudes to a complete nonmigratory behaviour. A resident fin whale population was described in the Mediterranean Sea, which is also frequented by North Atlantic individuals entering through the Strait of Gibraltar in winter to feed. Between 2020 and 2021 three individuals initially identified as fin whales died along the Tyrrhenian coasts (Mediterranean Sea, Italy). Their mitochondrial DNA control region (mtDNA CR) was analysed and compared to fin whale haplotypes previously described in North Atlantic Ocean and Mediterranean Sea to identify their geographical origin. Our results show that two individuals most likely belong to the Mediterranean fin whale population, while an individual was recognised as a putative fin-blue whale hybrid (Balaenoptera physalus x Balaenoptera musculus) with a North Atlantic origin. The discovery of the first fin-blue whale hybrid in the Mediterranean Sea was confirmed by the analysis of a biparentally inherited marker, the α-lactalbumin (α-lac) nuclear gene, demonstrating that the morphological analysis alone does not allow to correctly identify hybrids, especially if intermediate characters of both parental species are not clearly distinguishable

    Suppression of Parasitic Nonlinear Processes in Spontaneous Four-Wave Mixing with Linearly Uncoupled Resonators

    Get PDF
    We report on a signal-to-noise ratio characterizing the generation of identical photon pairs of more than 4 orders of magnitude in a ring resonator system. Parasitic noise, associated with single-pump spontaneous four-wave mixing, is essentially eliminated by employing a novel system design involving two resonators that are linearly uncoupled but nonlinearly coupled. This opens the way to a new class of integrated devices exploiting the unique properties of identical photon pairs in the same optical mode

    Effect of a Collagen-Based Compound on Morpho-Functional Properties of Cultured Human Tenocytes

    Get PDF
    Background: Greater Trochanter Pain Syndrome (GTPS) is the main reason for recalcitrant lateral hip pain. Gluteus medius and minimus tendinopathy plays a key role in this setting. An injectable medical compound containing collagen type I (MD-Tissue, Guna) has been produced with the aim to counteract the physiological and pathological degeneration of tendons. In this study we aimed at characterizing the effect of this medical compound on cultured human gluteal tenocytes, focusing on the collagen turnover pathways, in order to understand how this medical compound could influence tendon biology and healing. Methods: Tenocytes were obtained from gluteal tendon fragments collected in eight patients without any gluteal tendon pathology undergoing total hip replacement through an anterior approach. Cell proliferation and migration were investigated by growth curves and wound healing assay, respectively. The expression of genes and proteins involved in collagen turnover were analysed by real-time PCR, Slot blot and SDS-zymography. Results: Our data show that tenocytes cultured on MD-Tissue, compared to controls, have increased proliferation rate and migration potential. MD-Tissue induced collagen type I (COL-I) secretion and mRNA levels of tissue inhibitor of matrix metalloproteinases (MMP)-1 (TIMP-1). Meanwhile, lysyl hydroxylase 2b and matrix metalloproteinases (MMP)-1 and -2, involved, respectively, in collagen maturation and degradation, were not affected. Conclusions: Considered as a whole, our results suggest that MD-Tissue could induce in tenocytes an anabolic phenotype by stimulating tenocyte proliferation and migration and COL-I synthesis, maturation, and secretion, thus favouring tendon repair. In particular, based on its effect on gluteal tenocytes, MD-Tissue could be effective in the discouraging treatment of GTPS. From now a rigorous clinical investigation is desirable to understand the real clinical potentials of this compound
    • 

    corecore