27 research outputs found

    Nonlinear Dynamics of Dipoles in Microtubules: Pseudo-Spin Model

    Full text link
    We perform a theoretical study of the dynamics of the electric field excitations in a microtubule by taking into consideration the realistic cylindrical geometry, dipole-dipole interactions of the tubulin-based protein heterodimers, the radial electric field produced by the solvent, and a possible degeneracy of energy states of individual heterodimers. The consideration is done in the frames of the classical pseudo-spin model. We derive the system of nonlinear dynamical ordinary differential equations of motion for interacting dipoles, and the continuum version of these equations. We obtain the solutions of these equations in the form of snoidal waves, solitons, kinks, and localized spikes. Our results will help to a better understanding of the functional properties of microtubules including the motor protein dynamics and the information transfer processes. Our considerations are based on classical dynamics. Some speculations on the role of possible quantum effects are also made.Comment: 14 pages, 15 figures. The high resolution figure files are available by reques

    Kink solitons in DNA

    Full text link
    We here examine the nonlinear dynamics of artificial homogeneous DNA chain relying on the plain-base rotator model. It is shown that such dynamics can exhibit kink and antikink solitons of sine-Gordon type. In that respect we propose possible experimental assays based on single molecule micromanipulation techniques. The aim of these experiments is to excite the rotational waves and to determine their speeds along excited DNA. We propose that these experiments should be conducted either for the case of double stranded (DS) or single stranded (SS) DNA. A key question is to compare the corresponding velocities of the rotational waves indicating which one is bigger. The ratio of these velocities appears to be related with the sign of the model parameter representing ratio of the hydrogen-bonding and the covalent-bonding interaction within the considered DNA chain.Comment: 15 pages, 5 figure

    The importance of quantum decoherence in brain processes

    Full text link
    Based on a calculation of neural decoherence rates, we argue that that the degrees of freedom of the human brain that relate to cognitive processes should be thought of as a classical rather than quantum system, i.e., that there is nothing fundamentally wrong with the current classical approach to neural network simulations. We find that the decoherence timescales ~10^{-13}-10^{-20} seconds are typically much shorter than the relevant dynamical timescales (~0.001-0.1 seconds), both for regular neuron firing and for kink-like polarization excitations in microtubules. This conclusion disagrees with suggestions by Penrose and others that the brain acts as a quantum computer, and that quantum coherence is related to consciousness in a fundamental way.Comment: Minor changes to match accepted PRE version. 15 pages with 5 figs included. Color figures and links at http://www.physics.upenn.edu/~max/brain.html or from [email protected]. Physical Review E, in pres

    Neural cytoskeleton capabilities for learning and memory

    Get PDF
    This paper proposes a physical model involving the key structures within the neural cytoskeleton as major players in molecular-level processing of information required for learning and memory storage. In particular, actin filaments and microtubules are macromolecules having highly charged surfaces that enable them to conduct electric signals. The biophysical properties of these filaments relevant to the conduction of ionic current include a condensation of counterions on the filament surface and a nonlinear complex physical structure conducive to the generation of modulated waves. Cytoskeletal filaments are often directly connected with both ionotropic and metabotropic types of membrane-embedded receptors, thereby linking synaptic inputs to intracellular functions. Possible roles for cable-like, conductive filaments in neurons include intracellular information processing, regulating developmental plasticity, and mediating transport. The cytoskeletal proteins form a complex network capable of emergent information processing, and they stand to intervene between inputs to and outputs from neurons. In this manner, the cytoskeletal matrix is proposed to work with neuronal membrane and its intrinsic components (e.g., ion channels, scaffolding proteins, and adaptor proteins), especially at sites of synaptic contacts and spines. An information processing model based on cytoskeletal networks is proposed that may underlie certain types of learning and memory

    Calcium signaling modulates the dynamics of cilia and flagella

    No full text
    To adapt to changing environments cells must signal and signaling requires messengers whose concentration varies with time in space. We here consider the messenger role of calcium ions implicated in regulation of the wave-like bending dynamics of cilia and flagella. The emphasis is on microtubules as polyelectrolytes serving as transmission lines for the flow of Ca2+ signals in the axoneme. This signaling is superimposed with a geometric clutch mechanism for the regulation of flagella bending dynamics and our modeling produces results in agreement with experimental data

    Resonance mode in DNA dynamics

    No full text
    In this article we use Peyrard-Bishop-Dauxois model (PBD) to study the nonlinear oscillations of DNA nucleotides of extremely high amplitude (EHA) leading to unzipping of DNA chain in the context of the process of replication. We give arguments that the EHA mode is nothing but the resonance mode (RM). We launched an idea about how molecular mechano-chemical energy transduction can be the origin of the RM. We compared some parameters of the solitonic wave in DNA in resonant and non-resonant regime

    Role of nonlinear localized Ca2+ pulses along microtubules in tuning the mechano-sensitivity of hair cells

    No full text
    This paper aims to provide an overview of the polyelectrolyte model and the current understanding of the creation and propagation of localized pulses of positive ions flowing along cellular microtubules. In that context, Ca2+ ions may move freely on the surface of microtubule along the protofilament axis, thus leading to signal transport. Special emphasis in this paper is placed on the possible role of this mechanism in the function of microtubule based kinocilium, a component of vestibular hair cells of the inner ear. We discuss how localized pulses of Ca2+ ions play a crucial role in tuning the activity of dynein motors, which are involved in mechano sensitivity of the kinocilium. A prevailing notion holds that the concentration of Ca2+ ions around the microtubules within the kinocilium represents the control parameter for Hopf bifurcation. Therefore, a key feature of this mechanism is that the velocities of these Ca2+ pulses be sufficiently high to exert control at acoustic frequencies. (C) 2015 Elsevier Ltd. All rights reserved

    High amplitude mode and DNA opening

    No full text
    In this article, we define and analyse an extremely high amplitude (EHA) mode in DNA dynamics. The dynamics of a DNA chain is described by the Peyrard-Bishop-Dauxois model. We show that a local opening of the DNA chain in a process of m-RNA transcription is the EHA behaviour. Also, we point out that the helicoidal structure brings about the possibility for the EHA mode to occur
    corecore