6 research outputs found

    HYEI: A New Hybrid Evolutionary Imperialist Competitive Algorithm for Fuzzy Knowledge Discovery

    Get PDF
    In recent years, imperialist competitive algorithm (ICA), genetic algorithm (GA), and hybrid fuzzy classification systems have been successfully and effectively employed for classification tasks of data mining. Due to overcoming the gaps related to ineffectiveness of current algorithms for analysing high-dimension independent datasets, a new hybrid approach, named HYEI, is presented to discover generic rule-based systems in this paper. This proposed approach consists of three stages and combines an evolutionary-based fuzzy system with two ICA procedures to generate high-quality fuzzy-classification rules. Initially, the best feature subset is selected by using the embedded ICA feature selection, and then these features are used to generate basic fuzzy-classification rules. Finally, all rules are optimized by using an ICA algorithm to reduce their length or to eliminate some of them. The performance of HYEI has been evaluated by using several benchmark datasets from the UCI machine learning repository. The classification accuracy attained by the proposed algorithm has the highest classification accuracy in 6 out of the 7 dataset problems and is comparative to the classification accuracy of the 5 other test problems, as compared to the best results previously published

    A survey on single and multi omics data mining methods in cancer data classification

    No full text
    none4siData analytics is routinely used to support biomedical research in all areas, with particular focus on the most relevant clinical conditions, such as cancer. Bioinformatics approaches, in particular, have been used to characterize the molecular aspects of diseases. In recent years, numerous studies have been performed on cancer based upon single and multi-omics data. For example, Single-omics-based studies have employed a diverse set of data, such as gene expression, DNA methylation, or miRNA, to name only a few instances. Despite that, a significant part of literature reports studies on gene expression with microarray datasets. Single-omics data have high numbers of attributes and very low sample counts. This characteristic makes them paradigmatic of an under-sampled, small-n large-p machine learning problem. An important goal of single-omics data analysis is to find the most relevant genes, in terms of their potential use in clinics and research, in the batch of available data. This problem has been addressed in gene selection as one of the pre-processing steps in data mining. An analysis that use only one type of data (single-omics) often miss the complexity of the landscape of molecular phenomena underlying the disease. As a result, they provide limited and sometimes poorly reliable information about the disease mechanisms. Therefore, in recent years, researchers have been eager to build models that are more complex, obtaining more reliable results using multi-omics data. However, to achieve this, the most important challenge is data integration. In this paper, we provide a comprehensive overview of the challenges in single and multi-omics data analysis of cancer data, focusing on gene selection and data integration methods.noneMomeni Z.; Hassanzadeh E.; Saniee Abadeh M.; Bellazzi R.Momeni, Z.; Hassanzadeh, E.; Saniee Abadeh, M.; Bellazzi, R

    A Comparison of Neural Network Approaches for Network Intrusion Detection

    No full text
    International Conference on Artificial Intelligence and Applied Mathematics in Engineering (ICAIAME) -- APR 20-22, 2019 -- Antalya, TURKEYNowadays, network intrusion detection is an important area of research in computer network security, and the use of artificial neural networks (ANNs) have become increasingly popular in this field. Despite this, the research concerning comparison of artificial neural network architectures in the network intrusion detection is a relatively insufficient. To make up for this lack, this study aims to examine the neural network architectures in network intrusion detection to determine which architecture performs best, and to examine the effects of the architectural components, such as optimization functions, activation functions, learning momentum on the performance. For this purpose, 6480 neural networks were generated, their performances were evaluated by conducting a series of experiments on KDD99 dataset, and the results were reported. This study will be a useful reference to researchers and practitioners hoping to use ANNs in network intrusion detection
    corecore