347 research outputs found

    Toward Depth Estimation Using Mask-Based Lensless Cameras

    Full text link
    Recently, coded masks have been used to demonstrate a thin form-factor lensless camera, FlatCam, in which a mask is placed immediately on top of a bare image sensor. In this paper, we present an imaging model and algorithm to jointly estimate depth and intensity information in the scene from a single or multiple FlatCams. We use a light field representation to model the mapping of 3D scene onto the sensor in which light rays from different depths yield different modulation patterns. We present a greedy depth pursuit algorithm to search the 3D volume and estimate the depth and intensity of each pixel within the camera field-of-view. We present simulation results to analyze the performance of our proposed model and algorithm with different FlatCam settings

    Channel Protection: Random Coding Meets Sparse Channels

    Full text link
    Multipath interference is an ubiquitous phenomenon in modern communication systems. The conventional way to compensate for this effect is to equalize the channel by estimating its impulse response by transmitting a set of training symbols. The primary drawback to this type of approach is that it can be unreliable if the channel is changing rapidly. In this paper, we show that randomly encoding the signal can protect it against channel uncertainty when the channel is sparse. Before transmission, the signal is mapped into a slightly longer codeword using a random matrix. From the received signal, we are able to simultaneously estimate the channel and recover the transmitted signal. We discuss two schemes for the recovery. Both of them exploit the sparsity of the underlying channel. We show that if the channel impulse response is sufficiently sparse, the transmitted signal can be recovered reliably.Comment: To appear in the proceedings of the 2009 IEEE Information Theory Workshop (Taormina

    Joint Image and Depth Estimation With Mask-Based Lensless Cameras

    Get PDF
    Mask-based lensless cameras replace the lens of a conventional camera with a custom mask. These cameras can potentially be very thin and even flexible. Recently, it has been demonstrated that such mask-based cameras can recover light intensity and depth information of a scene. Existing depth recovery algorithms either assume that the scene consists of a small number of depth planes or solve a sparse recovery problem over a large 3D volume. Both these approaches fail to recover the scenes with large depth variations. In this paper, we propose a new approach for depth estimation based on an alternating gradient descent algorithm that jointly estimates a continuous depth map and light distribution of the unknown scene from its lensless measurements. We present simulation results on image and depth reconstruction for a variety of 3D test scenes. A comparison between the proposed algorithm and other method shows that our algorithm is more robust for natural scenes with a large range of depths. We built a prototype lensless camera and present experimental results for reconstruction of intensity and depth maps of different real objects

    Compressive Sensing with Tensorized Autoencoder

    Full text link
    Deep networks can be trained to map images into a low-dimensional latent space. In many cases, different images in a collection are articulated versions of one another; for example, same object with different lighting, background, or pose. Furthermore, in many cases, parts of images can be corrupted by noise or missing entries. In this paper, our goal is to recover images without access to the ground-truth (clean) images using the articulations as structural prior of the data. Such recovery problems fall under the domain of compressive sensing. We propose to learn autoencoder with tensor ring factorization on the the embedding space to impose structural constraints on the data. In particular, we use a tensor ring structure in the bottleneck layer of the autoencoder that utilizes the soft labels of the structured dataset. We empirically demonstrate the effectiveness of the proposed approach for inpainting and denoising applications. The resulting method achieves better reconstruction quality compared to other generative prior-based self-supervised recovery approaches for compressive sensing

    Generative Models for Low-Rank Video Representation and Reconstruction

    Get PDF
    Finding compact representation of videos is an essential component in almost every problem related to video processing or understanding. In this paper, we propose a generative model to learn compact latent codes that can efficiently represent and reconstruct a video sequence from its missing or under-sampled measurements. We use a generative network that is trained to map a compact code into an image. We first demonstrate that if a video sequence belongs to the range of the pretrained generative network, then we can recover it by estimating the underlying compact latent codes. Then we demonstrate that even if the video sequence does not belong to the range of a pretrained network, we can still recover the true video sequence by jointly updating the latent codes and the weights of the generative network. To avoid overfitting in our model, we regularize the recovery problem by imposing low-rank and similarity constraints on the latent codes of the neighboring frames in the video sequence. We use our methods to recover a variety of videos from compressive measurements at different compression rates. We also demonstrate that we can generate missing frames in a video sequence by interpolating the latent codes of the observed frames in the low-dimensional space
    corecore