1 research outputs found
User equipment geolocation depended on long-term evolution signal-level measurements and timing advance
A new approach is described for investigating the accuracy of positioning active long-term evolution (LTE) users. The explored approach is a network-based method and depends on signal level measurements as well as the coverage of the serving cell. In a two-dimensional coordinate system, the algorithm simultaneously applies LTE measured data with a combination of a basic prediction model to locate the mobile device’s user. Furthermore, we introduce a unique method that combines timing advance (TA) and the measured signal level to narrow the search region and improve accuracy. The developed method is assessed by comparing the predicted results from the proposed algorithm with satellite measurements from the global positioning system (GPS) in various scenarios calculated via the number of cells that user equipment concurrently reports. This work separates seven different cases starting from a single reported cell to five reported cells from up to 3 sites. For analysis, the root mean square error (RMSE) is computed to obtain the validation for the proposed approach. The study case demonstrates location accuracy based on the numbers of registered cells with the mean RMSE improved using TA to approximately 70-191 m for the range of scenarios