341 research outputs found

    Preservice teachers’ pictorial strategies for a multistep multiplicative fraction problem

    Full text link
    Previous research has documented that preservice teachers (PSTs) struggle with under- standing fraction concepts and operations, and misconceptions often stem from their understanding of the referent whole. This study expands research on PSTs’ understanding of wholes by investigating pictorial strategies that 85 PSTs constructed for a multistep fraction task in a multiplicative context. The results show that many PSTs were able to construct valid pictorial strategies, and the strategies were widely diverse with respect to how they made sense of an unknown referent whole of a fraction in multiple steps, how they represented the wholes in their drawings, in which order they did multiple steps, and which type of model they used (area or set). Based on their wide range of pictorial strategies, we discuss potential benefits of PSTs’ construction of their own representations for a word problem in developing problem solving skills

    Earthquake and ambient vibration monitoring of the steel frame UCLA Factor building

    Get PDF
    Dynamic property measurements of the moment-resisting steel-frame University of California, Los Angeles, Factor building are being made to assess how forces are distributed over the building. Fourier amplitude spectra have been calculated from several intervals of ambient vibrations, a 24-hour period of strong winds, and from the 28 March 2003 Encino, California (M_L =2.9), the 3 September 2002 Yorba Linda, California (M_L=4.7), and the 3 November 2002 Central Alaska (M_w=7.9) earthquakes. Measurements made from the ambient vibration records show that the first-mode frequency of horizontal vibration is between 0.55 and 0.6 Hz. The second horizontal mode has a frequency between 1.6 and 1.9 Hz. In contrast, the first-mode frequencies measured from earthquake data are about 0.05 to 0.1 Hz lower than those corresponding to ambient vibration recordings indicating softening of the soil-structure system as amplitudes become larger. The frequencies revert to pre-earthquake levels within five minutes of the Yorba Linda earthquake. Shaking due to strong winds that occurred during the Encino earthquake dominates the frequency decrease, which correlates in time with the duration of the strong winds. The first shear wave recorded from the Encino and Yorba Linda earthquakes takes about 0.4 sec to travel up the 17-story building

    Improving scalable video adaptation in a knowledge-based framework

    Get PDF
    In a knowledge-based content adaptation framework, video adaptation can be performed in a series of steps, named conversions. The high-level decision phase in such a framework occasionally encounters several feasible parameter values of a specific conversion. This paper proposes to transfer further decisions to a low-level phase that decides which parameters maximise the quality of the adaptation. Particularly when more than one solution are available, an innovative quality measure is used for selecting the best values for the parameters among the set of values that fulfil the adaptation constraints in the case of scalable vide

    Advanced Adaptation Techniques for Improved Video Perception

    Full text link

    Keynote Lecture – The Interplay of Multiple Hazards and Urban Development: The context of Istanbul

    Get PDF
    Tomorrow’s Cities is the UK Research and Innovation (UKRI) Global Challenges Research Fund (GCRF) Urban Disaster Risk Hub – an interdisciplinary research hub with the aim to catalyse a transition from crisis management to multi-hazard risk-informed and inclusive planning in four cities in low-and-middle income countries. Istanbul in Turkey is one of the four cities investigated. It is one of the largest urban agglomerations in Europe where more than 15 million people reside in more than 1 million buildings. Considering that the population was 4.75 million in 1980, Istanbul’s urban sprawl was inevitable. Due to an imbalance between the population growth and housing supply, Istanbul’s urbanization was shaped by illegal construction processes producing the gecekondus in almost every part of the city (Gencer and Mentese, 2016). Unplanned urban expansion was so rapid that the urban master plan of 1980, which set the limits and strategies for urban development, became completely invalid by 1989 (Tapan, 1998). This situation led to the development of a new urban master plan in 1994 that included geoscientific analysis, and which highlighted the possibility of losses due to an earthquake on the segments of the North Anatolian Fault in the Marmara Sea. Uncontrolled and unplanned development continued in Istanbul until 1999 when two major earthquakes hit the region causing at least 18.000 deaths and $16 billion economic loss. These events changed the authorities’ perspective to earthquake risk and its mitigation. As a result, the 1998 earthquake resistant design code (published one year before the 1999 earthquakes) was widely embraced and implemented. Furthermore, several urban transformation projects have taken place in the last 20 years for reducing disaster risk. These have had varied success, with research to date showing that areas selected for urban transformation were often chosen on the basis of land value rather than hazard risk, and that a pro-poor approach is missing. Despite these efforts, Istanbul’s earthquake risk remains high. Furthermore, recent urban development plans are seeing the city expand into undeveloped lands to the west, increasing exposure to new hazards, namely flash flooding and landslides. The combined impact of these hazards is not evenly distributed, and the associated risks are heightened by poor infrastructural resilience and social vulnerabilities. Therefore, it is crucial to integrate different types of hazards and risks into the urban development context for future scenarios, so that a physically and socio-economically safer development that prioritizes the wellbeing of local communities can be facilitated. This presentation summarises the research conducted in Istanbul over the first 18 months of the Tomorrow’s Cities Project by a consortium of Turkish and UK researchers. This research spans the better characterisation of earthquake and landslide hazards, development of analysis methods for predicting the response of case study buildings to multiple hazards and a Bayesian network based approach for assessing road infrastructure resilience under multiple hazard scenarios. Furthermore, plans for building a Resilient Urban Development Decision Support Environment (RUD-DSE) for communicating the relevance of this research on future urban planning is described

    A Persistence Detector for Metabolic Network Rewiring in an Animal

    Get PDF
    Biological systems must possess mechanisms that prevent inappropriate responses to spurious environmental inputs. Caenorhabditis elegans has two breakdown pathways for the short-chain fatty acid propionate: a canonical, vitamin B12-dependent pathway and a propionate shunt that is used when vitamin B12 levels are low. The shunt pathway is kept off when there is sufficient flux through the canonical pathway, likely to avoid generating shunt-specific toxic intermediates. Here, we discovered a transcriptional regulatory circuit that activates shunt gene expression upon propionate buildup. Nuclear hormone receptor 10 (NHR-10) and NHR-68 function together as a persistence detector in a type 1, coherent feed-forward loop with an AND-logic gate to delay shunt activation upon propionate accumulation and to avoid spurious shunt activation in response to a non-sustained pulse of propionate. Together, our findings identify a persistence detector in an animal, which transcriptionally rewires propionate metabolism to maintain homeostasis
    • …
    corecore