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SUMMARY

Biological systems must possess mechanisms that
prevent inappropriate responses to spurious envi-
ronmental inputs. Caenorhabditis elegans has two
breakdown pathways for the short-chain fatty acid
propionate: a canonical, vitamin B12-dependent
pathway and a propionate shunt that is used when
vitamin B12 levels are low. The shunt pathway is
kept off when there is sufficient flux through the ca-
nonical pathway, likely to avoid generating shunt-
specific toxic intermediates. Here, we discovered a
transcriptional regulatory circuit that activates shunt
gene expression upon propionate buildup. Nuclear
hormone receptor 10 (NHR-10) and NHR-68 function
together as a ‘‘persistence detector’’ in a type 1,
coherent feed-forward loop with an AND-logic gate
to delay shunt activation upon propionate accumula-
tion and to avoid spurious shunt activation in
response to a non-sustained pulse of propionate.
Together, our findings identify a persistence detector
in an animal, which transcriptionally rewires propio-
nate metabolism to maintain homeostasis.

INTRODUCTION

Propionate is a three-carbon, short-chain fatty acid that is gener-

ated by the breakdown of odd-chain fatty acids and branched-

chain amino acids. Propionate is toxic when it accumulates

and is eliminated from the body by a breakdown pathway that

uses vitamin B12 as a co-factor (Deodato et al., 2006).

The nematode Caenorhabditis elegans is a bacterivore that

can grow on a variety of diets that can be high or low in vitamin

B12. This metabolic flexibility is enabled in part because

C. elegans has two propionate breakdown pathways: the canon-

ical vitamin B12-dependent pathway and an alternate pathway,

or shunt, that is used under low vitamin B12 dietary conditions or

when flux through the canonical pathway is genetically per-

turbed (Watson et al., 2013, 2014, 2016) (Figure 1A). The co-

occurrence of two parallel pathways begs the question of why

the animal has maintained the canonical propionate breakdown

pathway. In other words, why not just use the propionate shunt?

When C. elegans is grown on bacterial diets with high levels of

vitamin B12, expression of the five propionate shunt genes is

low, with the first gene in the pathway, acdh-1, being almost

off (Watson et al., 2014, 2016). This indicates that the animal

strongly prefers to use the canonical pathway and prevents acti-

vation of the shunt pathway when it is not needed.

One reason for keeping flux through the propionate shunt

pathway low when it is not needed is that intermediates in this

pathway can be toxic when they accumulate. For instance, the

first step in the propionate shunt involves the conversion of pro-

pionyl-coenzyme A (CoA) into acrylyl-CoA, which can be con-

verted into the highly toxic intermediate acrylate upon dissocia-

tion of the CoA. Animals in which ech-6, encoding the enzyme

that metabolizes acrylyl-CoA (Figure 1A), is perturbed are very

sick, whereas a double perturbation of ech-6 and acdh-1, en-

coding the enzyme that generates acrylyl-CoA, rescues this

sickness, as the perturbation of acdh-1 prevents the production

of acrylate in the first place (Watson et al., 2016) (Figure 1A).

How does C. elegans ensure that the propionate shunt is kept

off and is only activatedwhen it is really needed?Here, we identify

two nuclear hormone receptors (NHRs), nhr-10 and nhr-68, that

are both transcriptionally and functionally important for the activa-

tion of shunt gene expression in response to the excessive accu-

mulation of propionate. We find that nhr-10 activates nhr-68 and

that nhr-68 expression alone is not sufficient to drive propionate

shunt gene activation, i.e., both nhr-10 and nhr-68 are required,

indicating that they do not act in a simple linear pathway.

Together, our findings indicate that nhr-10 and nhr-68 function

together in a gene regulatory network circuit known as a feed-for-

ward loop (FFL) with an AND-logic gate. Previousmodeling by Uri

Alon has led to the specific prediction that FFLs with AND-logic

gates will generate a delay in target gene activation and that a

short pulse of input is not sufficient to activate target gene expres-

sion, and, therefore, such circuits have been named ‘‘persistence

detectors’’ (Alon, 2007). However, with the exception of the

L-arabinose utilization system in Escherichia coli (Mangan and

Alon, 2003), the existence and importance of transcriptional

persistence detector circuits in multicellular organisms has re-

mained unclear. We demonstrate that the nhr-10/nhr-68 circuit

functions as a persistence detector in several ways. First, there

is a �3-hr delay in propionate shunt activation upon the supple-

mentation of propionate. Second, a 1-hr pulse of propionate is

not sufficient to activate propionate shunt gene expression.

Finally, we show that NHR-68 overexpression is not sufficient to
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activate propionate shunt gene expression in response to propio-

nate, demonstrating that the twoNHRs do not function in a simple

linear pathway. We propose that the propionate persistence de-

tector functions to ensure that the propionate shunt stays off un-

less propionate accumulation is persistent, thereby preventing

the unwanted generation of highly toxic shunt intermediates.

This gene regulatory network architecture links dietary input to

metabolic output to ensure animal homeostasis.

RESULTS

The Nuclear Hormone Receptors nhr-10 and nhr-68

Activate Propionate Shunt Gene Expression in
Response to Propionate
Propionate is generated and broken down in the C. elegans in-

testine, an organ composed of precisely 20 cells that functions

both as the animal’s gut and its liver (Figure 1B). Our previous

data indicate that the animal strongly prefers to use the canoni-

cal, vitamin B12-dependent propionate breakdown pathway and

that it has tight control mechanisms to keep the propionate shunt

pathway off unless it is needed, such as under persistently low

vitamin B12 conditions. We have used a transgenic C. elegans

strain that expresses the GFP under the control of the acdh-1

gene promoter as a proxy for shunt gene expression (Arda

et al., 2010; MacNeil et al., 2013; Watson et al., 2013, 2014,

2016). acdh-1 encodes an acyl-CoA dehydrogenase that cata-

lyzes the first reaction in the propionate shunt pathway and is

most highly expressed in the C. elegans intestine (Arda et al.,

2010; MacNeil et al., 2013; Watson et al., 2013, 2014, 2016).

When these transgenic animals are fed a bacterial diet that is

low in vitamin B12, intestinal GFP expression is high, whereas

GFP levels are low on diets high in vitamin B12 (MacNeil et al.,

2013; Watson et al., 2014, 2016) (Figure 1B). In addition, GFP

expression is activated when genes in the canonical propionate

breakdown pathway are genetically perturbed, even in the pres-

ence of vitamin B12, or when propionate is supplemented to high

vitamin B12 bacterial diets (Watson et al., 2013, 2014, 2016). We

have previously used the Pacdh-1::GFP strain in the context of

defining a C. elegans intestinal gene regulatory network by

comprehensive transcription factor (TF) RNAi, and found more

than 40 TFs that activate the acdh-1 promoter in the absence

of exogenously supplemented propionate (MacNeil et al.,

2015). However, it is not clear whether all or only a subset of

these TFs specifically mediate the transcriptional response to

propionate.

To identify the TFs that specifically activate acdh-1 expression

in response to propionate, we tested the previously found TFs in

the presence of both vitamin B12 (to repress basal GFP expres-

sion) and propionate (to specifically activate GFP expression)

(Figure S1A). Interestingly, we found that RNAi of only a subset

of the 43 TFs that affected GFP expression under untreated con-

ditions also affected GFP levels on propionate supplemented

conditions (Figures 2A and S1B). Specifically, RNAi of 16 TFs

reduced GFP expression under both conditions, RNAi of 26

TFs only repressed GFP expression on untreated conditions,

and RNAi of one TF, mxl-3, reduced GFP expression on un-

treated conditions but activated the acdh-1 promoter on propio-

nate-supplemented conditions. These results indicate that the

acdh-1 promoter not only responds to excess propionate but

to other cellular conditions as well and that the response to these

other conditions involves other TFs.

Several of the 16 TFs that reduce GFP expression when

knocked down by RNAi function at high levels in the intestinal

gene regulatory network and likely affect acdh-1 promoter activ-

ity indirectly (MacNeil et al., 2015). For instance, the intestinal

master regulator elt-2 broadly controls intestinal gene expres-

sion and resides at the top of the hierarchy (MacNeil et al.,

2015; McGhee et al., 2007). Knock down of either of the two

TFs, nhr-10 or nhr-68, had a strong effect on acdh-1 promoter

activity under propionate-supplemented conditions, and these

TFs reside low in the gene regulatory network hierarchy (MacNeil

et al., 2015). As TFs that reside low in the hierarchy tend to

directly affect the promoter, this result suggests that nhr-10

and nhr-68 may be critical for propionate shunt activation.

Indeed, deletion of either nhr-10 or nhr-68 greatly reduced

acdh-1 promoter activity, as well as endogenous acdh-1 ex-

pression (Figures 2B and 2C). Quantitative analysis of GFP

Figure 1. Two C. elegans Propionate Breakdown Pathways That

Function in the Animal’s Intestine

(A) Cartoon of C. elegans propionate breakdown pathways. B12, vitamin B12;

3-HP, 3-hydroxypropionate; MM-CoA, methylmalonyl-CoA; MSA, malonic

semialdehyde.

(B) Cartoon of the activation of propionate shunt expression in the 20-cell

C. elegans intestine under different dietary conditions.
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Figure 2. The Nuclear Hormone Receptors NHR-10 and NHR-68Mediate the Transcriptional and Functional Response to Excess Propionate

(A) Fluorescent microscopy images of TF RNAi show that only a subset of TFs that activate the acdh-1 promoter in animals fed E. coliHT115 bacteria are involved

in the transcriptional response to excess propionate. Insets show differential interference contrast (DIC) images.

(B) The transcriptional response to excess propionate is greatly reduced in nhr-10 and nhr-68 deletion mutants, validating the TF RNAi results.

(C) qRT-PCR experiment showing that endogenous acdh-1 expression is not induced in response to propionate in nhr-10 and nhr-68 deletion mutants.

(D) nhr-10 and nhr-68 are required for acdh-1 promoter activation in a broad range of vitamin B12 and propionate concentrations. Left panel shows images of

Pacdh-1::GFP animals supplemented with indicated concentrations of vitamin B12 and/or propionate. Right three panels show quantification of GFP levels at

(legend continued on next page)
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expression in a broad range of vitamin B12 and propionate con-

centrations revealed that nhr-10 and nhr-68 are both required for

acdh-1 promoter activation under a broad range of propionate

concentrations. Although nhr-10 is absolutely required, there is

still modest GFP expression in nhr-68 deletion mutant animals

(Figure 2D). These observations indicate that nhr-10 and nhr-

68 together activate the expression of propionate shunt gene

expression in response to excess propionate.

Are nhr-10 and nhr-68 functionally important to prevent the

buildup of toxic propionate? We previously found that acdh-1

expression under low vitamin B12 conditions is important tomiti-

gate the effects of excess propionate (Watson et al., 2014, 2016).

Specifically, the lethal dose 50 (LD50) of propionate in acdh-1

mutant animals fed an E. coli diet low in vitamin B12 is similar

to that of pcca-1 deletion mutants, in which flux through the ca-

nonical propionate breakdown pathway is perturbed (Figures

1A and 2E) (Watson et al., 2014, 2016). Here, we found that

Figure 3. Expression Profiling of nhr-10 and

nhr-68 Deletion Mutant Animals

(A) Bar graph showing the 23 genes that are signif-

icantly repressed by vitamin B12 and induced by

propionate in wild-type animals, as identified by

RNA-seq.

(B) Bar graph of RNA-seq fragments per kilobase of

transcript per million mapped reads (FPKM) data

showing that all five propionate shunt genes are

activated by nhr-10 and nhr-68 in response to

excess propionate.

(C) Scatterplot showing that 13 of the 23 genes

repressed by vitamin B12 and induced by propio-

nate are controlled by both nhr-10 and nhr-68. Gene

numbers for each condition are in parentheses.

each concentration in Pacdh-1::GFP animals in wild-type, nhr-10, or nhr-68 deletion mutant animals. Quantification is the average of nine experiments: three

biological replicates with three technical replicates each.

(E) Propionate toxicity assays show that nhr-10 and nhr-68 are functionally required tomitigate the toxic effects of propionate. Top panel shows propionate dose-

response curves, and bottom panel shows LD50 values.

both nhr-10 and nhr-68 deletion mutants

are more sensitive to excess propionate

than wild-type animals (Figure 2E). Impor-

tantly, deletion of either gene renders the

animals equally sensitive to propionate as

deletion of their transcriptional target

acdh-1, which shows that both of these

TFs are functionally important to mitigate

propionate toxicity. Altogether, these data

show that nhr-10 and nhr-68 are both

required for transcriptional as well as func-

tional activation of propionate shunt gene

expression.

nhr-10 and nhr-68 Activate All Five
Propionate ShuntGenes in Response
to Excess Propionate
So far, we have used the Pacdh-1::GFP

transgenic strain as a proxy for studying

propionate shunt activation. To investigate activation of the other

four propionate shunt genes and to identify additional genes that

are repressed by vitamin B12 and activated by propionate, we

performed RNA sequencing (RNA-seq) on wild-type, Dnhr-10,

and Dnhr-68 mutant animals under untreated, vitamin B12

only, and vitamin B12 + propionate-supplemented conditions.

We identified 23 genes that in wild-type animals are repressed

by vitamin B12 and activated by propionate, including four of

the five propionate shunt genes (Figure 3A). The fifth gene

alh-8 behaved similarly with an adjusted p value <0.01 but was

just below our cutoff of a fold-change greater than or equal to

1.5 (Figure 3B; Table S1). Importantly, activation of 13 of these

23 genes required both nhr-10 and nhr-68, including the propio-

nate shunt genes (Figure 3C). This indicates that a larger gene

battery than just the propionate shunt genes is under control of

both NHRs and indicates that additional genes may be involved

in propionate shunt metabolism or regulation.

Cell Reports 26, 460–468, January 8, 2019 463



nhr-10 and nhr-68 Function in a Coherent Type 1 FFL
with an AND-Logic Gate
Although nhr-10mRNA levels are not affected by vitamin B12 or

propionate supplementation, nhr-68 expression is repressed by

vitamin B12 and activated by propionate (Figures 4A and 4B).

Interestingly, we found that nhr-68 mRNA levels are reduced in

nhr-10 deletion mutant animals both by RNA-seq and by qRT-

PCR (Figures 4A and 4B), which indicates that nhr-10 activates

the expression of nhr-68. RNAi of nhr-10 in Pnhr-68::GFP::H2B

transgenic animals led to a reduction in GFP expression

compared to vector control RNAi, validating this result (Fig-

ure 4C). Interestingly, nhr-68 RNAi also caused a reduction in

GFP levels in this strain, indicating that nhr-68 activates its

own expression. Altogether, our observations indicate that nhr-

10 and nhr-68 function in a specific type of circuit known as a

coherent type 1 FFL with an AND-logic gate (Figure 4D). How-

ever, our data so far do not exclude the possibility that nhr-10

and nhr-68 function in a simple linear pathway where nhr-10 ac-

tivates nhr-68 and nhr-68 activates propionate shunt gene

expression. To test this idea, we overexpressed nhr-68 under

the control of the promoter of moderately and highly constitu-

tively expressed intestinal genes ges-1 and asp-5, respectively.

Neither of these genes is affected by vitamin B12 or propionate

or by deletion of nhr-10 (Figures S2A and S2B).We examined the

induction of acdh-1 expression by qRT-PCR either with vector

control or with nhr-10 RNAi in both strains. We found that, in

these animals, acdh-1 mRNA levels were repressed by vitamin

B12 and induced by propionate, just as in wild-type animals (Fig-

ures 4E and S2C). However, acdh-1 levels were greatly reduced

Figure 4. nhr-10 Activates nhr-68 Expression

and nhr-68 Is an Autoactivator

(A) Bar graph of RNA-seq data for nhr-10 and nhr-68

mRNA levels in the absence of nhr-68 (left) and nhr-

10 (right).

(B) Bar graph showing qRT-PCR data for nhr-68

mRNA levels in the absence of nhr-10. Statistical

differences between wild-type and nhr-10 deletion

mutants were determined by two-tailed paired Stu-

dent’s t test (*p < 0.05, **p < 0.005).

(C) Fluorescent microscopy images of RNAi of nhr-

10 or nhr-68 shows reduced GFP expression in

Pnhr-68::GFP::H2B transgenic animals. Insets show

DIC images.

(D) Cartoon of the nhr-10/nhr-68 gene regulatory

network circuit.

(E) qRT-PCR shows that constitutive intestinal

expression of NHR-68 under the control of the ges-1

promoter does not induce acdh-1 expression in

response to propionate. All measurements are sta-

tistically significantly different compared to un-

treated vector control as determined by two-tailed

paired Student’s t test (p < 0.05).

upon RNAi of nhr-10, indicating that nhr-10

is absolutely required for propionate shunt

activation. This finding demonstrates that

activation of nhr-68 by nhr-10 is not suffi-

cient for propionate shunt gene induction

in response to propionate but rather that

the path leading from nhr-10 to these genes is essential as

well. This essential role of nhr-10 is in agreement with our previ-

ous observation that this TF directly binds the acdh-1 gene

promoter (Arda et al., 2010; MacNeil et al., 2015). These obser-

vations indicate that nhr-10 and nhr-68 do not function in a

simple linear genetic pathway but that they function in a more

complex circuitry, represented by the type 1 coherent FFL in

Figure 4D.

The nhr-10/nhr-68 Coherent Type 1 FFL with an
AND-Logic Gate Functions as a Propionate Persistence
Detector
Mathematical modeling of type 1 coherent FFLs with AND-logic

gates has led to the prediction that such circuits function as

persistence detectors that generate a delay in target gene

expression and only activate downstream target genes when

the input is sustained. This is because it takes time for the first

TF in the circuit to activate the second and both are required

(Alon, 2007). However, this prediction has so far only been exper-

imentally substantiated using a synthetic circuit in E. coli (Man-

gan and Alon, 2003).

Next, we askedwhether the nhr-10/nhr-68 circuit may function

as a genuine persistence detector. To do so, we tested two pre-

dictions based on previous modeling (Mangan and Alon, 2003):

first that activation of acdh-1 would exhibit a delay upon propio-

nate supplementation, and second that a short pulse of propio-

nate supplementation would not induce acdh-1 activation. We

first constitutively supplemented Pacdh-1::GFP transgenic ani-

mals kept on vitamin B12 (GFP expression off) with propionate

464 Cell Reports 26, 460–468, January 8, 2019



and quantified GFP expression every 30 min the first 2 hr and

every hr for 22 hr and after 30 and 36 hr. As expected, GFP

stayed off in animals that were constitutively supplemented

with vitamin B12 (Figure 5A). When supplemented with propio-

nate, however, GFP expression was robustly induced. Impor-

tantly, this induction occurred with a delay of �3 hr. When

Pacdh-1::GFP animals were given the same concentration of

propionate, but only in a 1-hr pulse, GFP expression was not

induced (Figure 5B). Finally, using qRT-PCR of endogenous

nhr-10, nhr-68 and acdh-1 expression, we again found that

nhr-10 expression does not change with propionate, whereas

nhr-68 expression is modestly induced after about 1 hr, after

which it stabilizes, followed by a longer induction of acdh-1

mRNA. Note that the induction of the acdh-1mRNA is a bit faster

than the induction of GFP expression in the reporter strain and

that it tapers off, likely because of mRNA decay.

nhr-68 Autoactivation Can Modulate the Delay in
Persistence Detector Target Gene Activation
Next, we asked how nhr-68 autoactivation may contribute to the

functionality of the persistence detector. For this, we modeled a

type 1 coherent FFL with an AND-gate with autoregulation of

nhr-68andsimulated thesystemusingMichaelis-Mentenkinetics.

We used the fitted experimental data from Figure 5A to estimate

model parameters (Figure 6A; see STAR Methods). We then

explored the interplay between nhr-68 basal expression rate

(characterized by the parameter, r) and nhr-68 autoregulatory

expression rate (characterized by rA) on the observed delay in

targetgeneexpression.Figure6Bshowsaheatmapofdelay times

as a function of these two parameters over a broad range of

values. Although precise quantitative values of the model param-

eters are not known,we foundan interesting general feature of the

circuit.Without autoactivation, the systemhas a tight rangeof pre-

dicted delay times that is relatively insensitive to the basal rate of

induction and is set by the decay rates of the constituent TFs (Fig-

ure 6C). However, the inclusion of autoregulation of nhr-68 en-

ables a wide range of delays that are set by the basal expression

rate (which, in our model, is controlled solely by nhr-10). In other

words, small basal rates resulting from lower input signals would

trigger longer delays in target gene expression, whereas strong

input signals would trigger shorter delays and a quicker response

(Figures 6C and 6D). To test this prediction, we supplemented

Pacdh-1::GFP animalswith different concentrationsof propionate

and examined the induction of GFP expression. Indeed, we found

that higher concentrations of sustained propionate result in faster

activation of GFP expression (Figure 6E).

Taken together, propionate shunt activation only occurs when

propionate buildup is sustained and requires a transcriptional

circuit involving nhr-10 and nhr-68 that function as a persistence

detector in a type 1 coherent FFL with an AND-logic gate.

DISCUSSION

We have discovered a transcriptional persistence detector in a

multicellular organism. This persistence detector activates the

five genes comprising the propionate shunt pathway in

C. elegans. This pathway provides an alternative way to catabo-

lize propionate, which is toxic when it accumulates in both hu-

mans and C. elegans (Deodato et al., 2006; Watson et al.,

2016). Shunting of propionate occurs in both humans and

C. elegans, as indicated by the detection of shunt pathway inter-

mediates in propionic acidemia patients and individuals withmu-

tations in other relevant genes (Ando et al., 1972; Deodato et al.,

2006; Peters et al., 2015). However, although C. elegans has

evolved a propionate shunt pathway that is transcriptionally

inducedwhen propionate accumulates, humans likely repurpose

metabolic enzymes that function in other metabolic pathways

(Watson et al., 2016).

Two observations indicate that C. elegans preferentially uses

the canonical, vitamin B12-dependent propionate breakdown

pathway, rather than the propionate shunt. First, the canonical

pathway has not been lost in evolution, whichwould be expected

if its function became obsolete. Second, the shunt pathway is

inactive when flux through the canonical pathway is enabled

by the sufficient dietary intake of vitamin B12. One reason for

the preferential use of the canonical pathway is that the propio-

nate shunt generates acrylate, which is much more toxic than

propionate. Acrylate is produced in the first reaction in the propi-

onate shunt where propionyl-CoA is converted into acrylyl-CoA

(which can be interconverted with acrylate when the CoA is

chemically or enzymatically removed) by the ACDH-1 enzyme

(Figure 1). The next enzyme in the shunt pathway, ECH-6, then

converts acrylyl-CoA into 3-hydroxypropionyl-CoA. We previ-

ously found that RNAi of ech-6 renders the animals very sick

and that double perturbation of ech-6 with acdh-1 suppresses

Figure 5. acdh-1 Expression Is Induced with a 3-Hr Delay in

Response to Propionate andDoesNot Respond to a 1-Hr Propionate

Pulse

(A) GFP expression in Pacdh-1::GFP animals transferred from vitamin B12

(black circles) to constitutive propionate supplementation (red squares) shows

a �3-hr delay.

(B) A 1-hr pulse of propionate does not induce GFP expression in Pacdh-1::

GFP animals.

(C) qRT-PCR experiment of endogenous nhr-10, nhr-68 and acdh-1 expres-

sion upon propionate supplementation.
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this phenotype (Watson et al., 2016). Our data indicate that

C. elegans ensures that the shunt pathway stays off until it is

really needed by using a transcriptional persistence detection

mechanism.

The activation of shunt gene expression, asmeasured using the

Pacdh-1::GFP reporter strain, occurs with a delay of �3 hr. This

suggests that the response to excess propionate is on a relatively

long timescale due to a relatively straightforward metabolite

buildup rather than as a short-acting signal. Although our study il-

luminates the system-level mechanism of propionate persistence

detection, the precise molecular mechanism remains to be eluci-

dated. We previously found that NHR-10 physically binds the

acdh-1 promoter in yeast one-hybrid assays (Arda et al., 2010;

MacNeil et al., 2015).We do not yet knowwhether it also interacts

with the other shunt gene promoters. One possibility is that NHR-

68 and NHR-10 physically interact to form a heterodimer. How-

ever, we did not detect any interactions with NHR-68 in our

large-scale protein-DNA and protein-protein interaction studies

(Fuxman Bass et al., 2016; Reece-Hoyes et al., 2013), so this re-

mains to be investigated.We also do not yet know themechanism

Figure 6. Computational Modeling Shows

That nhr-68 Autoactivation Can Modulate

the Delay in Target Gene Expression

(A) Fit of propionate supplementation data from

Figure 5A to estimate approximate parameter range.

(B) Heatmap of delay time to reach 2% of steady

state level of GFP based on the rate of basal

expression, r, and the rate of autoregulation, rA, of

the nhr-68 gene.

(C) Delay time as a function of autoregulatory

strength for several basal rates from the range of

values examined in (B).

(D) Delay time with autoregulation (using rA found

from C) and without autoregulation as basal rate is

tuned.

(E) Dynamics of Pacdh-1::GFP activation in

response to different propionate concentrations.

of propionate detection by the persistence

detector and howmuch intracellular propio-

nate buildup is required to activate the

circuit. Propionate is generated from odd-

chain fatty acids, branched-chain amino

acids, methionine, and threonine (Yilmaz

and Walhout, 2016), and is catabolized in

the mitochondria (Al-Lahham et al., 2010).

How information involved in propionate

shunt activation is transferred from the

mitochondria and cytoplasm to NHRs in

the nucleus is not known. It is tempting to

speculate that NHR-10, NHR-68, or both

directly interact with propionate, a three-

carbon short-chain fatty acid, given that

NHRs are known to use fatty acids as li-

gands (Evans and Mangelsdorf, 2014).

However, the small size and volatility of pro-

pionate make detection of its interaction

with proteins extremely challenging.

Several observations indicate that the persistence detector

does not function in isolation and does not function solely to acti-

vate the expression of acdh-1 and other genes but, rather, that it

is embedded in a larger gene regulatory network. First, the set of

downstream targets consists of at least 13 genes that are

repressed by vitamin B12, activated by propionate, and depen-

dent on both nhr-10 and nhr-68. Aside from four shunt genes,

this set contains nine genes, the function of which is largely un-

known. It is likely that several of these genes function to support

shunt function or to enable its shutdown when nutritional condi-

tions favor the use of the canonical vitamin B12-dependent

propionate breakdown pathway. Second, many additional TFs

are involved in acdh-1 expression (MacNeil et al., 2015; this

study). These include 16 TFs that, when knocked down by

RNAi, reduce acdh-1 promoter activity either induced by propi-

onate supplementation or under untreated conditions. Most of

these TFs have a partial effect and reside higher in the hierarchy

of the intestinal gene regulatory network (MacNeil et al., 2015)

and likely affect the acdh-1 promoter indirectly. RNAi of one

TF, mxl-3, reduced acdh-1 promoter activity on E. coli bacteria
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but increased it under propionate-supplemented conditions. We

did not follow up on this observation because we observed only

very small effects on propionate shunt gene expression inmxl-3

mutant animals (data not shown). Another set of 26 TFs regulate

acdh-1 under untreated conditions only, i.e., their knockdown

has no effect on propionate-supplemented conditions. This

finding indicates that acdh-1 responds to other metabolites

that act by other TFs. Interestingly, these TFs include nhr-101

and nhr-114, which would be appealing candidates to mediate

the response to other metabolites. It is interesting to note that

acdh-1 expression is not completely off in either nhr-10 or nhr-

68 deletion mutant in the untreated condition (Figure 2D) and

that this residual expression is repressed by vitamin B12. This

observation suggests that other metabolites activating acdh-1

may also be functionally connected to vitamin B12 metabolism.

Moreover, it suggests that acdh-1 may have a function outside

the propionate shunt. Taken together, we discovered a persis-

tence detector in a multicellular organism and linked this gene

regulatory network architecture to a functional metabolic

response in a whole animal.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Escherichia coli OP50 Caenorhabditis Genetics

Center (CGC)

N/A

Escherichia coli HT115 CGC N/A

Escherichia coli HT115 Ahringer RNAi Library (Kamath et al., 2003) N/A

Escherichia coli HT115 ORFeome RNAi Library (Rual et al., 2004) N/A

Chemicals, Peptides, and Recombinant Proteins

Propionic Acid Sigma Aldrich Cat#: P1386

Adenosyl Cobalamin Sigma Aldrich Cat#: C0884

BP clonase II ThermoFisher Scientific Cat#: 11789020

Isopropyl b-D-1 thiogalactopyranoside (IPTG) US Biological Cat#: I8500

Levamisole Hydrochloride Sigma Aldrich Cat#: PHR1798

Polyethylene Glycol Sigma Aldrich Cat#: 202444

TRIzol Reagent Life Technologies Cat#: 15596-018

M-MuLV Reverse Transcriptase NEB Cat#: M0253

Direct-zol RNA Mini Prep Kit Zymo Research Cat#: R2050

DNase I NEB Cat#: M0303

Oligo(dT) 12-18 Primer Invitrogen Cat#: 18418012

RNaseOut Invitrogen Cat#: 10777019

Fast SYBR Green Master Mix ThermoFisher Scientific Cat#: 4385616

Deposited Data

Raw and analyzed RNA-seq data This study GEO: GSE123507

Experimental Models: Organisms/Strains

Caenorhabditis elegans N2 (wild type) CGC N/A

C. elegans nhr-10(tm4695) National Bioresource

Project, Japan

WormBase: WBVar00253059

C. elegans nhr-68(gk708) CGC Strain: VC1527 WormBase: WBVar00146032

C. elegans pcca-1(ok2282) CGC Strain: RB1774 WormBase: WBVar00093442

C. elegans acdh-1(ok1489) CGC Strain: VC1011 WormBase: WBVar00092700

C. elegans wwIs24[Pacdh-1::GFP; unc-119(+)] (MacNeil et al., 2013) Strain: VL749 WormBase: WBTransgene00018139

C. elegans nhr-10(tm4695); wwIs24[Pacdh-1::GFP;

unc-119(+)]

(MacNeil et al., 2013) Strain: VL868

C. elegans nhr-68(tm708); wwIs24[Pacdh-1::GFP;

unc-119(+)]

(Watson et al., 2013) Strain: VL1113

C. elegans wwSi28[Pnhr-68::GFP::H2B; unc-119(+) II] This study Strain: VL1286

C. elegans wwSi29[Pges-1::NHR-68::GFP; unc-119(+) II] This study Strain: VL1296

C. elegans wwSi30[Pasp-5::NHR-68; unc-119(+) II] This study Strain: VL1297

Oligonucleotides

List of Oligonucleotides This study Table S2

Recombinant DNA

pDONR P4-P1R (Dupuy et al., 2007) N/A

pDONR 221 ThermoFisher Scientific Cat#: 12536017

pDONR P2R-P3 (for unc-54 30 UTR) N/A

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to and will be fulfilled by the Lead Contact, A.J.M. Walhout (marian.

walhout@umassmed.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

C. elegans Strains
N2 (Bristol) was used as the wild-type strain, and animals weremaintained on nematode growthmedium (NGM) at 20�C as described

(Brenner, 1974). Transgenic strains VL1286 (wwSi28[Pnhr-68::GFP::H2B; unc-119(+) II]), VL1296 (wwSi29[Pges-1::NHR-68::GFP;

unc-119(+) II]), VL1297 (wwSi30[Pasp-5::NHR-68; unc-119(+) II]) were developed by using theMos1-mediated single-copy insertion

(MosSCI) method (Frøkjær-Jensen et al., 2014) and the integrated transgenes were confirmed by PCR genotyping (Table S2).

METHOD DETAILS

RNA Interference
RNAi was performed as described (MacNeil et al., 2015) with or without supplementation of 5 nM vitamin B12 and 40mMpropionate.

Changes in intestinal GFP were scored visually when samples contained a mix of L4 and young adult animals. Knockdowns were

scored as positive when most animals in the well displayed a change in intestinal GFP. Changes in GFP levels in other tissues

were not recorded. Experiments were performed five independent times. TFs that scored in at least three independent experiments

were considered hits. All RNAi clones included in the final dataset were sequence-verified.

Propionate and Vitamin B12 Gradient Assays
L1 synchronized animals were grown on NGM media supplemented with a matrix of propionate (0 to 40 mM) and vitamin B12 (0 to

64 nM) concentrations. GFP fluorescence was measured using a Tecan Infinite M1000Pro microplate reader as described (Leung

et al., 2011). Five adult animals were randomly picked in triplicate and transferred to a 384 well plate containing 35 ml of buffer

(M9 buffer, 1 mM levamisole and 0.5% PEG). GFP intensity measurement was performed at 485nm/9nm excitation and 535nm/

20nm emission spectra. Each experiment was performed in biological triplicate with three technical triplicates each, and the fluores-

cence intensity of each biological replicate was averaged. The average fluorescence intensity was used to make the heatmap using

the online tool http://www.heatmapper.ca/expression/.

Propionate Toxicity Assays
Propionate toxicity assays were performed as described previously (Watson et al., 2016). Approximately 100-200 synchronized L1

animals (hatched overnight, 20 hours post-bleach) were added to E. coli OP50-seeded 35 mm NGM agar plates containing various

concentrations of pH-neutralized propionic acid. Each dose tested included two technical and three biological replicates. After 72

hours, animals that had developed past L1 stage were counted. The fraction surviving, S, as a function of propionic acid concentra-

tion, [C], was fit to the following dose response curve:

S=SN +
ðS0 � SNÞ

1+ ð½LD50�=½C�Þn ;

where S0 and SN are the fraction of animals surviving at zero and at saturating concentrations of propionic acid and n is the Hill slope.

The dose required to kill 50% of the population, LD50, was found by least-squares fit of these four parameters. Toxicity assays were

performed in biological triplicate, and the average LD50 was plotted ± SEM.

Expression Profiling
Animals were fed E. coliOP50 on NGM-agar supplemented with 10 nM vitamin B12. Animals were then grown on NGM-agar without

vitamin B12 and synchronized for two generations by L1 arrest inM9 buffer for 18 hours post-treatment with buffered bleach. Animals
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were then grown onNGM-agar alone, or on NGM-agar supplemented with either 20 nM vitamin B12 or 20 nM vitamin B12 and 40mM

propionate. Approximately 3000 L4 stage animals were harvested and washed three times inM9 buffer for each condition. Total RNA

was isolated using Trizol (Invitrogen) followed by DNase I (NEB) treatment and cleanup using Direct-zol RNA Mini Prep kit (Zymo

Research). Two biological replicates for each condition were sequenced. Sequencing was performed by BGI using BGISEQ-500

platform with a single-end 50 bp read length, and a minimum of 26 million reads per sample. Differential gene expression between

samples was analyzed using the standard output of BGI bioinformatics pipeline using EBSeq (Leng et al., 2013) for identifying

differentially expressed genes. Differentially expressed genes were selected based on a fold change of R ± 1.5, and adjusted

P-value % 0.01.

qRT-PCR
qRT-PCR was performed as described previously (Watson et al., 2016). Briefly, synchronized L1 animals were grown on NGM-agar

plates containing 20 nM vitamin B12 and/or 40 mMpropionate seeded with E. coliOP50 and grown at 20�C until they reached to late

L4 stage. About 1500 animals were harvested for each condition, in triplicate. Animals were washed in M9 buffer and total RNA was

isolated using TRIzol Reagent (Life Technologies), following byDNaseI (NEB) treatment and cleanupwith Direct-zol RNAMini Prep Kit

(Zymo Research). cDNA was prepared from RNA using Oligo(dT) 12-18 Primer (Invitrogen) and M-MuLV Reverse Transcriptase

(NEB). qPCR was performed in technical triplicate per gene condition using the Applied Biosystems StepOnePlus Real-Time PCR

system and Fast Sybr Green Master Mix (ThermoFisher Scientific). Relative transcript abundance was determined by using the

DDCt method (18546601) and normalized to averaged ama-1 and act-1 mRNA expression levels. Primer sequences are provided

in Table S2.

Propionate Pulse Experiments
L1 synchronized animals were grown on 10 nM vitamin B12 supplemented media seeded with E. coli OP50 until the adult stage.

Animals were then transferred to 40 mM propionate supplemented media either constitutively, or for one hour, and transferred

back to vitamin B12 supplemented media. During each transfer the animals were washed three times using M9 buffer. For each

time point, five adult animals were randomly picked and transferred to a 384 well plate containing 35 ml M9 buffer containing

1 mM levamisole and 0.5% polyethylene glycol. GFP was measured at 485nm/20nm excitation and 535nm/20nm emission spectra

as described above. Each experiment was performed in biological triplicate with three technical replicates each, and the fluores-

cence intensity of technical replicates were averaged for each biological replicate.

Modeling FFL with Positive Autoregulation
In the coherent FFL motif with an AND-logic gate (Figure 4D), propionate causes nhr-10 to activate nhr-68 expression with a basal

rate r, and both nhr-10 and nhr-68 jointly activate GFP expression through an AND logic-gate with a rate rc. In the absence of the

signal, rc = 0 due to the AND logic. Additionally, nhr-68 autoactivates with rate rA. Implicit in this model is the assumption that

nhr-10 acts as a switch; i.e., nhr-10 is ‘‘on’’ in the presence of propionate and ‘‘off’’ in its absence, and that levels of nhr-10 do

not change with time. To model the dynamics of the system we used Michaelis-Menten kinetics to arrive at the following ODEs

that describe the system. GFP expression driven by the acdh-1 promoter in Pacdh-1::GFP transgenic animals was used as a proxy

for propionate shunt expression:

d½nhr68�
dt

= r + rA
½nhr68�

k + ½nhr68� � anhr68½nhr68�;

d½GFP�
dt

= rc
½nhr68�

k + ½nhr68� � aGFP½GFP�;

where a is the degradation rate of nhr-68 or GFP and k is the dissociation constant. We assumed the degradation rate of nhr-68 to

be relatively fast and set anhr68 = 1=hour. The decay rate of GFP, which is known to be very stable, was set to aGFP = 0:05=hour

which is determined from fitting the decay of GFP signal over time when propionate is washed out; although aGFP does not

have biological relevance, it impacts the dynamics of our measured signal and the rate of approach to steady state. The

dissociation constant is set to 1. The steady state concentration of GFP is obtained by setting the ODEs to zero and solving

for GFP and nhr-68 levels. The delay time, defined as the time to reach 2% of the maximum GFP level, is numerically obtained

by solving the ODEs using the ODE solver, ODE45, in MATLAB. We fit the data for r, rA and rc in order to estimate the magnitude of

these parameters. The role of autoregulation in the circuit was tested by varying the two contributions to nhr-68 production

(autoregulation, characterized by rA and basal expression from nhr-10 alone, characterized by r) around these best-fit values.

Adjusting the parameters k and anhr68 alter the fit parameters, however, the highlighted qualitative features of the circuit remain

unchanged.
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QUANTIFICATION AND STATISTICAL ANALYSES

Error bars for FPKM numbers from RNA-seq experiments represent the standard deviation from the average of two experiments.

Differentially expressed genes from theRNA-seq dataset were selected based on a fold change of 1.5 ormore and aP-adjusted value

of less than 0.01. The specific statistical parameters are represented in the figure legends of each figure.

DATA AND SOFTWARE AVAILABILITY

The RNA-sequencing data files were deposited in the NCBI Gene Expression Omnibus (GEO) under accession number GEO:

GSE123507.
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